cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184583 floor[(n-1/5)(1+r)], where r=(1+sqrt(5))/2; complement of A184582.

Original entry on oeis.org

2, 4, 7, 9, 12, 15, 17, 20, 23, 25, 28, 30, 33, 36, 38, 41, 43, 46, 49, 51, 54, 57, 59, 62, 64, 67, 70, 72, 75, 78, 80, 83, 85, 88, 91, 93, 96, 98, 101, 104, 106, 109, 112, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 146, 148, 151, 153, 156, 159, 161, 164, 167, 169, 172, 174, 177, 180, 182, 185, 187, 190, 193, 195, 198, 201, 203, 206, 208, 211, 214, 216, 219, 222, 224, 227, 229, 232, 235, 237, 240, 242, 245, 248, 250, 253, 256, 258, 261, 263, 266, 269, 271, 274, 276, 279, 282, 284, 287, 290, 292, 295, 297, 300, 303, 305, 308, 311, 313
Offset: 1

Views

Author

Clark Kimberling, Jan 17 2011

Keywords

Crossrefs

Cf. A184582.

Programs

  • Mathematica
    r=(1+5^(1/2))/2; c=-1/5; s=r/(r-1);
    Table[Floor[n*r-c*r],{n,1,120}]  (* A184582 *)
    Table[Floor[n*s+c*s],{n,1,120}]  (* A184583 *)

Formula

a(n)=floor[(n-1/5)(1+r)], where r=(1+sqrt(5))/2.