This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184617 #33 Sep 04 2021 13:28:04 %S A184617 0,1,2,5,4,5,10,9,8,9,10,21,20,21,18,17,16,17,18,21,20,21,42,41,40,41, %T A184617 42,37,36,37,34,33,32,33,34,37,36,37,42,41,40,41,42,85,84,85,82,81,80, %U A184617 81,82,85,84,85,74,73,72,73,74,69,68,69,66,65,64,65,66,69,68,69,74,73,72,73,74,85,84,85,82,81,80,81,82 %N A184617 With nonadjacent forms: A184615(n) + A184616(n). %C A184617 No two adjacent bits in the binary representations of a(n) are 1. %C A184617 The value 0 appears once, otherwise, if the binary representation of a(n) has k set bits then it appears 2^(k-1) times. %H A184617 Alois P. Heinz, <a href="/A184617/b184617.txt">Table of n, a(n) for n = 0..10922</a> %H A184617 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, pages 61-62. %F A184617 a(n) = A184615(n) + A184616(n). %F A184617 a(n) = A178729(n)/2 = (n XOR n*3)/2. Note a(2^n) = 2^n. - _Alex Ratushnyak_, Aug 13 2012 %e A184617 See A184615. %t A184617 a[n_] := Module[{nh, n3, c}, nh = BitShiftRight[n]; n3 = n + nh; c = BitXor[nh, n3]; BitAnd[n3, c] + BitAnd[nh, c]]; %t A184617 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, May 30 2019, from PARI code in A184615 *) %o A184617 (PARI) (see A184615) %o A184617 (Python) %o A184617 for n in range(77): %o A184617 print((n^(n*3))/2, end=',') %o A184617 # _Alex Ratushnyak_, Aug 13 2012 %Y A184617 Cf. A178729. %Y A184617 Cf. A184615 (positive parts), A184616 (negated negative parts). %K A184617 nonn,look %O A184617 0,3 %A A184617 _Joerg Arndt_, Jan 18 2011