This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184625 #11 Sep 08 2022 08:45:55 %S A184625 4,7,10,14,17,21,24,27,31,34,38,41,44,48,51,55,58,62,65,68,72,75,79, %T A184625 82,85,89,92,96,99,103,106,109,113,116,120,123,126,130,133,137,140, %U A184625 144,147,150,154,157,161,164,167,171,174,178,181,184,188,191,195,198,202,205,208,212,215,219,222,225,229 %N A184625 a(n) = floor((n-h)*s +h), where s=2+sqrt(2) and h=-1/4; complement of A184624. %H A184625 G. C. Greubel, <a href="/A184625/b184625.txt">Table of n, a(n) for n = 1..10000</a> %F A184625 a(n) = floor[(n-h)*s +h], where s=2+sqrt(2) and h=-1/4. %t A184625 r=2^(1/2); h=-1/4; s=r/(r-1); %t A184625 Table[Floor[n*r+h],{n,1,120}] (* A184624 *) %t A184625 Table[Floor[n*s+h-h*s],{n,1,120}] (* A184625 *) %o A184625 (PARI) for(n=1, 100, print1(floor(n*sqrt(2)/(sqrt(2)-1) + sqrt(2)/(4*sqrt(2) - 4) - 1/4), ", ")) \\ _G. C. Greubel_, Apr 20 2018 %o A184625 (Magma) [Floor(n*Sqrt(2)/(Sqrt(2) - 1) + Sqrt(2)/(4*Sqrt(2) - 4) - 1/4): n in [1..100]]; // _G. C. Greubel_, Apr 20 2018 %Y A184625 Cf. A184618, A184624. %K A184625 nonn %O A184625 1,1 %A A184625 _Clark Kimberling_, Jan 18 2011