This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184629 #14 Mar 21 2017 10:46:52 %S A184629 1,7,22,51,100,173,274,409,583,800,1064,1382,1757,2195,2700,3276,3930, %T A184629 4665,5487,6400,7408,8518,9733,11059,12500,14060,15746,17561,19511, %U A184629 21600,23832,26214,28749,31443,34300,37324,40522,43897,47455,51200,55136,59270,63605,68147,72900,77868,83058,88473,94119,100000 %N A184629 Floor(1/{(5+n^4)^(1/4)}), where {}=fractional part. %H A184629 Ray Chandler, <a href="/A184629/b184629.txt">Table of n, a(n) for n = 1..10000</a> %H A184629 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1, 0, 1, -3, 3, -1). %F A184629 a(n)=floor(1/{(5+n^4)^(1/4)}), where {}=fractional part. %F A184629 It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-5)-3a(n-6)+3a(n-7)-a(n-8) for n>=15. %t A184629 p[n_]:=FractionalPart[(n^4+5)^(1/4)]; q[n_]:=Floor[1/p[n]]; %t A184629 Table[q[n], {n, 1, 80}] %t A184629 FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] %t A184629 Join[{1, 7, 22, 51, 100, 173}, LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {274, 409, 583, 800, 1064, 1382, 1757, 2195}, 44]] (* _Ray Chandler_, Aug 01 2015 *) %Y A184629 Cf. A184536. %K A184629 nonn %O A184629 1,2 %A A184629 _Clark Kimberling_, Jan 18 2011