This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184631 #13 Mar 21 2017 10:47:53 %S A184631 1,5,15,36,71,123,196,292,416,571,760,987,1255,1568,1928,2340,2807, %T A184631 3332,3919,4571,5292,6084,6952,7899,8928,10043,11247,12544,13936, %U A184631 15428,17023,18724,20535,22459,24500,26660,28944,31355,33896,36571,39383,42336,45432,48676,52071,55620,59327,63195,67228,71428,75800 %N A184631 Floor(1/{(7+n^4)^(1/4)}), where {}=fractional part. %H A184631 Ray Chandler, <a href="/A184631/b184631.txt">Table of n, a(n) for n = 1..10000</a> %H A184631 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1, 0, 0, 0, 1, -3, 3, -1). %F A184631 a(n)=floor(1/{(7+n^4)^(1/4)}), where {}=fractional part. %F A184631 It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-7)-3a(n-8)+3a(n-9)-a(n-10) for n>=13. %t A184631 p[n_]:=FractionalPart[(n^4+7)^(1/4)]; q[n_]:=Floor[1/p[n]]; %t A184631 Table[q[n], {n, 1, 80}] %t A184631 FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] %t A184631 Join[{1,5},LinearRecurrence[{3,-3,1,0,0,0,1,-3,3,-1},{15,36,71,123,196,292,416,571,760,987},49]] (* _Ray Chandler_, Aug 02 2015 *) %Y A184631 Cf. A184536. %K A184631 nonn %O A184631 1,2 %A A184631 _Clark Kimberling_, Jan 18 2011