cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A184659 floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/3; complement of A184658.

Original entry on oeis.org

3, 5, 8, 11, 13, 16, 18, 21, 24, 26, 29, 31, 34, 37, 39, 42, 45, 47, 50, 52, 55, 58, 60, 63, 65, 68, 71, 73, 76, 79, 81, 84, 86, 89, 92, 94, 97, 100, 102, 105, 107, 110, 113, 115, 118, 120, 123, 126, 128, 131, 134, 136, 139, 141, 144, 147, 149, 152, 155, 157, 160, 162, 165, 168, 170, 173, 175, 178, 181, 183, 186, 189, 191, 194, 196, 199, 202, 204, 207, 209, 212, 215, 217, 220, 223, 225, 228, 230, 233, 236, 238, 241, 244, 246, 249, 251, 254, 257, 259, 262, 264, 267, 270, 272, 275, 278, 280, 283, 285, 288, 291, 293, 296, 298, 301
Offset: 1

Views

Author

Clark Kimberling, Jan 19 2011

Keywords

Crossrefs

Cf. A184658.

Programs

  • Mathematica
    r=(1+5^(1/2))/2; h=-1/3; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184658 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184659 *)

Formula

a(n)=floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/3.

A184734 a(n)=floor(nr+h), where r=(1+sqrt(5))/2, h=1/3; complement of A184735.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 11, 13, 14, 16, 18, 19, 21, 22, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 44, 45, 47, 48, 50, 52, 53, 55, 56, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105, 107, 108, 110, 111, 113, 115, 116, 118, 120, 121, 123, 124, 126, 128, 129, 131, 133, 134, 136, 137, 139, 141, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 168, 170, 171, 173, 175, 176, 178, 179, 181, 183, 184, 186, 188, 189, 191, 192, 194
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2011

Keywords

Comments

Differs from A184582 first at index n=137. - R. J. Mathar, Jan 29 2011

Crossrefs

Programs

  • Mathematica
    r=(1+sqrt(5))/2, h=1/3; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184734 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (*A184735 *)

Formula

a(n)=floor(nr+h), where r=(1+sqrt(5))/2, h=1/3.

A184732 a(n) = floor(n*r+h), where r=(1+sqrt(5))/2, h=-1/4; complement of A184733.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 40, 41, 43, 45, 46, 48, 49, 51, 53, 54, 56, 57, 59, 61, 62, 64, 66, 67, 69, 70, 72, 74, 75, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 109, 111, 113, 114, 116, 117, 119, 121, 122, 124, 125, 127, 129, 130, 132, 134, 135, 137, 138, 140, 142, 143, 145, 146, 148, 150, 151, 153, 155, 156, 158, 159, 161, 163, 164, 166, 168, 169, 171, 172, 174, 176, 177, 179, 180, 182, 184, 185, 187, 189, 190, 192, 193
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2011

Keywords

Crossrefs

Programs

  • Mathematica
    r=(1+sqrt(5))/2, h=-1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184732 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (*A184733 *)

Formula

a(n) = floor(n*r+h), where r=(1+sqrt(5))/2, h=-1/4.
Showing 1-3 of 3 results.