A184679 Number of (n+1) X 3 binary arrays with every 2 X 2 subblock singular.
28, 128, 544, 2384, 10384, 45392, 198352, 867152, 3791056, 16575056, 72469456, 316854608, 1385372368, 6057228368, 26483886544, 115794964304, 506288081104, 2213633766992, 9678629263312, 42317689343312, 185024841512656
Offset: 1
Keywords
Examples
Some solutions for 5 X 3: ..0..0..1....1..0..1....1..0..1....0..0..0....0..0..1....0..0..0....0..0..1 ..0..0..0....1..0..0....1..0..0....0..1..1....0..0..1....1..0..1....1..0..0 ..0..0..1....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0 ..1..0..0....0..0..0....0..1..1....0..0..1....0..0..0....1..0..1....0..1..1 ..1..0..0....0..0..0....0..0..0....1..0..1....1..0..1....1..0..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A184686.
Formula
Empirical: a(n) = 5*a(n-1) - 12*a(n-3).
Conjectures from Colin Barker, Apr 14 2018: (Start)
G.f.: 4*x*(7 - 3*x - 24*x^2) / ((1 - 2*x)*(1 - 3*x - 6*x^2)).
a(n) = 2^(-2-n)*(11*2^(1+2*n) - 3*(3-sqrt(33))^n*(-55+7*sqrt(33)) + 3*(3+sqrt(33))^n*(55+7*sqrt(33))) / 11.
(End)
Comments