cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A184678 Number of (n+1)X(n+1) binary arrays with every 2X2 subblock singular.

Original entry on oeis.org

10, 128, 3360, 221968, 31817360, 10876933264, 8344809419152, 14901599172048528, 60581954550463205264, 567946901826257621019792, 12186523252504462055625831824, 601019440996497914601529636314768
Offset: 1

Views

Author

R. H. Hardin Jan 19 2011

Keywords

Comments

Diagonal of A184686

Examples

			Some solutions for 3X3
..1..1..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..0....1..0..1
..0..0..0....0..0..1....0..0..0....1..1..1....0..1..0....0..0..0....0..0..1
..1..1..1....1..0..0....1..0..0....1..1..1....0..0..0....0..1..0....0..0..1
		

A184679 Number of (n+1) X 3 binary arrays with every 2 X 2 subblock singular.

Original entry on oeis.org

28, 128, 544, 2384, 10384, 45392, 198352, 867152, 3791056, 16575056, 72469456, 316854608, 1385372368, 6057228368, 26483886544, 115794964304, 506288081104, 2213633766992, 9678629263312, 42317689343312, 185024841512656
Offset: 1

Views

Author

R. H. Hardin, Jan 19 2011

Keywords

Comments

Column 2 of A184686.

Examples

			Some solutions for 5 X 3:
..0..0..1....1..0..1....1..0..1....0..0..0....0..0..1....0..0..0....0..0..1
..0..0..0....1..0..0....1..0..0....0..1..1....0..0..1....1..0..1....1..0..0
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0
..1..0..0....0..0..0....0..1..1....0..0..1....0..0..0....1..0..1....0..1..1
..1..0..0....0..0..0....0..0..0....1..0..1....1..0..1....1..0..0....0..0..0
		

Crossrefs

Cf. A184686.

Formula

Empirical: a(n) = 5*a(n-1) - 12*a(n-3).
Conjectures from Colin Barker, Apr 14 2018: (Start)
G.f.: 4*x*(7 - 3*x - 24*x^2) / ((1 - 2*x)*(1 - 3*x - 6*x^2)).
a(n) = 2^(-2-n)*(11*2^(1+2*n) - 3*(3-sqrt(33))^n*(-55+7*sqrt(33)) + 3*(3+sqrt(33))^n*(55+7*sqrt(33))) / 11.
(End)

A184680 Number of (n+1) X 4 binary arrays with every 2 X 2 subblock singular.

Original entry on oeis.org

76, 544, 3360, 21968, 140816, 909520, 5858896, 37779664, 243525712, 1569965008, 10120785744, 65244856016, 420606054992, 2711476238800, 17479769838928, 112684908266704, 726433311008848, 4683017326649296, 30189489673849680
Offset: 1

Views

Author

R. H. Hardin, Jan 19 2011

Keywords

Comments

Column 3 of A184686.

Examples

			Some solutions for 3 X 4:
..0..0..0..0....0..0..0..0....1..0..1..0....0..0..0..0....0..0..1..0
..1..1..0..0....1..0..0..0....0..0..0..0....0..1..0..0....0..0..0..0
..1..1..0..1....0..0..1..1....0..0..0..0....0..1..0..0....0..1..0..0
		

Crossrefs

Cf. A184686.

Formula

Empirical: a(n) = 7*a(n-1) + 2*a(n-2) - 40*a(n-3) + 24*a(n-4) + 16*a(n-5).
Empirical g.f.: 4*x*(19 + 3*x - 150*x^2 + 100*x^3 + 64*x^4) / ((1 - 2*x)*(1 - 5*x - 12*x^2 + 16*x^3 + 8*x^4)). - Colin Barker, Apr 14 2018

A184681 Number of (n+1) X 5 binary arrays with every 2 X 2 subblock singular.

Original entry on oeis.org

208, 2384, 21968, 221968, 2171152, 21547024, 212829840, 2107074576, 20846869136, 206331811088, 2041995275664, 20210243538448, 200025118846608, 1979715148636944, 19593894295270288, 193927696142858256
Offset: 1

Views

Author

R. H. Hardin, Jan 19 2011

Keywords

Comments

Column 4 of A184686.

Examples

			Some solutions for 3 X 5:
..1..1..1..0..0....1..0..0..0..1....0..0..1..0..0....0..0..0..0..1
..0..0..0..0..0....1..0..0..0..0....0..0..0..0..0....1..1..0..0..0
..1..1..0..1..0....1..0..1..1..1....1..0..0..0..1....0..0..0..1..1
		

Crossrefs

Formula

Empirical: a(n) = 16*a(n-1) - 51*a(n-2) - 190*a(n-3) + 1058*a(n-4) - 848*a(n-5) - 1392*a(n-6) + 1536*a(n-7).
Empirical g.f.: 16*x*(13 - 59*x - 348*x^2 + 1974*x^3 - 1692*x^4 - 2688*x^5 + 3072*x^6) / (1 - 16*x + 51*x^2 + 190*x^3 - 1058*x^4 + 848*x^5 + 1392*x^6 - 1536*x^7). - Colin Barker, Apr 14 2018

A184682 Number of (n+1)X6 binary arrays with every 2X2 subblock singular.

Original entry on oeis.org

568, 10384, 140816, 2171152, 31817360, 476660624, 7079094288, 105530924944, 1570852959248, 23397537190544, 348412932162320, 5188788920597392, 77271414617633808, 1150747018045489296, 17137111768900018448
Offset: 1

Views

Author

R. H. Hardin Jan 19 2011

Keywords

Comments

Column 5 of A184686

Examples

			Some solutions for 3X6
..0..0..1..0..0..0....1..1..0..0..0..0....0..1..0..0..0..0....0..0..1..1..1..1
..1..0..0..0..1..0....1..1..0..1..0..0....0..1..0..0..1..1....1..0..0..0..0..0
..1..0..1..0..0..0....1..1..0..0..0..1....0..1..0..0..1..1....0..0..0..0..0..1
		

Formula

Empirical: a(n)=25*a(n-1)-131*a(n-2)-771*a(n-3)+8180*a(n-4)-11482*a(n-5)-71100*a(n-6)+202352*a(n-7)+125888*a(n-8)-816032*a(n-9)+304768*a(n-10)+951040*a(n-11)-590848*a(n-12)-217088*a(n-13)+98304*a(n-14)

A184683 Number of (n+1)X7 binary arrays with every 2X2 subblock singular.

Original entry on oeis.org

1552, 45392, 909520, 21547024, 476660624, 10876933264, 245133874960, 5556396815504, 125663816659728, 2845061488472976, 64387245566119440, 1457456269843957904, 32988377007885609744, 746694792891303623056
Offset: 1

Views

Author

R. H. Hardin Jan 19 2011

Keywords

Comments

Column 6 of A184686

Examples

			Some solutions for 3X7
..1..1..0..0..0..0..1....0..1..1..1..0..0..1....0..0..1..0..1..0..1
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....1..0..1..0..0..0..1
..0..1..1..0..1..1..0....0..0..1..0..1..1..1....0..0..1..0..0..0..0
		

Formula

Empirical: a(n)=56*a(n-1)-1052*a(n-2)+4920*a(n-3)+87215*a(n-4)-1275080*a(n-5)+4248374*a(n-6)+28043568*a(n-7)-257190864*a(n-8)+336187440*a(n-9)+3401007808*a(n-10)-13508494272*a(n-11)-5065367296*a(n-12)+118586597376*a(n-13)-155918166016*a(n-14)-382474903552*a(n-15)+1052692692992*a(n-16)+138988113920*a(n-17)-2622368481280*a(n-18)+1618343657472*a(n-19)+2637273628672*a(n-20)-2971728347136*a(n-21)-751046754304*a(n-22)+1836551503872*a(n-23)-237498269696*a(n-24)-373930590208*a(n-25)+107911053312*a(n-26)

A184684 Number of (n+1)X8 binary arrays with every 2X2 subblock singular.

Original entry on oeis.org

4240, 198352, 5858896, 212829840, 7079094288, 245133874960, 8344809419152, 286297979078416, 9790004471087504, 335277906309809680, 11474887935176701072, 392843564281607701264, 13447355724118720653712
Offset: 1

Views

Author

R. H. Hardin Jan 19 2011

Keywords

Comments

Column 7 of A184686

Examples

			Some solutions for 3X8
..1..1..1..1..0..1..1..1....1..1..1..1..1..0..1..1....0..1..0..0..1..0..0..1
..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1
..0..0..1..0..1..0..1..1....1..0..0..0..1..0..1..0....1..0..0..1..1..0..0..1
		

Formula

Empirical: a(n)=92*a(n-1)-3003*a(n-2)+31550*a(n-3)+481077*a(n-4)-16442348*a(n-5)+135033835*a(n-6)+741942550*a(n-7)-20954527348*a(n-8)+102045857556*a(n-9)+713666898352*a(n-10)-9716258869416*a(n-11)+17186451128624*a(n-12)+289681963920496*a(n-13)-1691497400814000*a(n-14)-1882402290967680*a(n-15)+44882201430699072*a(n-16)-88390630163330944*a(n-17)-542851169447838720*a(n-18)+2525834335158943232*a(n-19)+1800071397226896384*a(n-20)-31289408691912675328*a(n-21)+34310775517304918016*a(n-22)+211668243392493412352*a(n-23)-536751356055340597248*a(n-24)-697198118444155895808*a(n-25)+3759507207074723397632*a(n-26)-371921969188297506816*a(n-27)-15556432037802748149760*a(n-28)+14098583304108343558144*a(n-29)+39191202165496466112512*a(n-30)-65162825849586994642944*a(n-31)-54093570021181637001216*a(n-32)+163171603653081197182976*a(n-33)+15034165722787050684416*a(n-34)-251239947541401976176640*a(n-35)+80289291422456883445760*a(n-36)+240497400256778289020928*a(n-37)-147758813741492778041344*a(n-38)-136386373557801378119680*a(n-39)+123382364965405429071872*a(n-40)+39172341838880698269696*a(n-41)-55109077889398981263360*a(n-42)-2090409433165310459904*a(n-43)+12438820010657417527296*a(n-44)-1370765122182385238016*a(n-45)-1078080685999204073472*a(n-46)+198446613980453535744*a(n-47)

A184685 Number of (n+1)X9 binary arrays with every 2X2 subblock singular.

Original entry on oeis.org

11584, 867152, 37779664, 2107074576, 105530924944, 5556396815504, 286297979078416, 14901599172048528, 772255092178447120, 40103190379637623184, 2080745823672990984720, 108004153792892136250000
Offset: 1

Views

Author

R. H. Hardin Jan 19 2011

Keywords

Comments

Column 8 of A184686

Examples

			Some solutions for 3X9
..1..0..1..1..0..0..1..0..1....0..0..0..1..1..1..1..1..0
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..0
..0..0..1..0..0..0..0..1..0....0..0..0..0..0..0..0..0..1
		
Showing 1-8 of 8 results.