A184701 Number of strings of numbers x(i=1..n) in 0..7 with sum i*x(i) equal to n*7.
1, 4, 22, 107, 471, 1842, 6575, 21713, 67105, 195760, 543050, 1440869, 3674381, 9042422, 21548644, 49872800, 112387351, 247136196, 531320447, 1118701390, 2310261518, 4685733808, 9345070552, 18346037917, 35487652677, 67696833402
Offset: 1
Keywords
Examples
Some solutions for n=4 ..5....5....4....4....3....7....5....3....2....2....3....0....0....4....0....4 ..3....0....0....4....7....3....1....6....1....7....0....3....4....6....0....7 ..3....1....4....0....1....5....7....3....4....4....7....6....0....4....4....2 ..2....5....3....4....2....0....0....1....3....0....1....1....5....0....4....1
Links
- Robert Israel, Table of n, a(n) for n = 1..1000 (first 139 terms from R. H. Hardin)
Crossrefs
Cf. A184703.
Programs
-
Maple
F:= proc(n,t) option remember; local d,s; if n = 1 then return `if`(t<=7,1,0) fi; s:= 0: for d from 0 to min(7, t/n) do s:= s + procname(n-1,t-n*d) od: s end proc: seq(F(n,7*n),n=1..100); # Robert Israel, Feb 13 2017
-
Mathematica
F[n_, t_] := F[n, t] = Module[{d, s}, If[n == 1, Return[If[t <= 7, 1, 0]]]; s = 0; For[d = 0, d <= Min[7, t/n], d++, s += F[n - 1, t - n*d]]; s]; Table[F[n, 7*n], {n, 1, 100}] (* Jean-François Alcover, Aug 29 2022, after Robert Israel *)
Comments