cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184709 Number of strings of numbers x(i=1..9) in 0..n with sum i*x(i) equal to n*9.

This page as a plain text file.
%I A184709 #7 Jun 02 2025 03:51:25
%S A184709 8,91,580,2574,8939,26146,67105,155645,332729,665317,1257898,2268061,
%T A184709 3925640,6557703,10618287,16725802,25706637,38648840,56963074,
%U A184709 82456645,117416301,164706836,227880334,311304767,420304310,561323415,742104234
%N A184709 Number of strings of numbers x(i=1..9) in 0..n with sum i*x(i) equal to n*9.
%C A184709 Row 9 of A184703
%H A184709 R. H. Hardin, <a href="/A184709/b184709.txt">Table of n, a(n) for n = 1..200</a>
%F A184709 Empirical: a(n)=a(n-1)+a(n-2)+a(n-3)-a(n-4)-2*a(n-5)-a(n-7)+a(n-8)-a(n-9)+a(n-10)+a(n-11)+3*a(n-12)+a(n-13)-a(n-14)-a(n-15)-2*a(n-16)-a(n-17)-3*a(n-18)+3*a(n-21)+a(n-22)+2*a(n-23)+a(n-24)+a(n-25)-a(n-26)-3*a(n-27)-a(n-28)-a(n-29)+a(n-30)-a(n-31)+a(n-32)+2*a(n-34)+a(n-35)-a(n-36)-a(n-37)-a(n-38)+a(n-39)
%e A184709 Some solutions for n=3
%e A184709 ..3....2....1....3....1....2....1....3....0....0....1....0....1....1....0....0
%e A184709 ..0....2....1....3....0....0....2....1....2....1....0....1....3....1....0....0
%e A184709 ..2....3....0....0....0....1....3....0....0....3....3....0....2....0....2....0
%e A184709 ..0....1....1....0....1....0....2....1....0....2....3....1....2....2....0....1
%e A184709 ..0....0....0....0....2....3....1....1....3....0....1....0....0....0....1....2
%e A184709 ..0....0....2....0....2....0....0....1....0....0....0....2....1....0....0....1
%e A184709 ..0....0....0....0....0....1....0....1....0....0....0....0....0....1....1....1
%e A184709 ..0....1....1....0....0....0....0....0....1....1....0....0....0....0....0....0
%e A184709 ..2....0....0....2....0....0....0....0....0....0....0....1....0....1....1....0
%K A184709 nonn
%O A184709 1,1
%A A184709 _R. H. Hardin_ Jan 20 2011