cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184710 Number of strings of numbers x(i=1..10) in 0..n with Sum_{i=1..10} i*x(i) = n*10.

This page as a plain text file.
%I A184710 #8 Feb 05 2025 22:03:23
%S A184710 10,142,1066,5439,21310,69331,195760,495251,1146377,2467215,4994696,
%T A184710 9599863,17642702,31185762,53268735,88272866,142374254,224127675,
%U A184710 345174032,521130514,772646635,1126707621,1618154572,2291530676
%N A184710 Number of strings of numbers x(i=1..10) in 0..n with Sum_{i=1..10} i*x(i) = n*10.
%H A184710 R. H. Hardin, <a href="/A184710/b184710.txt">Table of n, a(n) for n = 1..200</a>
%F A184710 Empirical: a(n)=2*a(n-2)+a(n-3)-a(n-6)-3*a(n-7)-2*a(n-8)+3*a(n-12)+4*a(n-13)+2*a(n-14)+3*a(n-15)+2*a(n-16)-3*a(n-17)-5*a(n-18)-4*a(n-19)-5*a(n-20)-4*a(n-21)-a(n-22)+2*a(n-23)+4*a(n-24)+6*a(n-25)+6*a(n-26)+4*a(n-27)+2*a(n-28)-a(n-29)-4*a(n-30)-5*a(n-31)-4*a(n-32)-5*a(n-33)-3*a(n-34)+2*a(n-35)+3*a(n-36)+2*a(n-37)+4*a(n-38)+3*a(n-39)-2*a(n-43)-3*a(n-44)-a(n-45)+a(n-48)+2*a(n-49)-a(n-51).
%e A184710 Some solutions for n=3:
%e A184710 ..0....1....0....0....2....1....0....3....0....0....0....0....3....3....0....1
%e A184710 ..1....2....1....3....0....0....1....3....3....2....2....1....0....0....1....3
%e A184710 ..0....0....1....1....0....1....0....1....0....0....1....0....3....0....0....2
%e A184710 ..1....2....1....0....3....0....1....1....2....3....0....3....2....1....0....0
%e A184710 ..0....1....1....1....0....2....2....0....0....0....0....0....0....0....1....0
%e A184710 ..0....2....0....0....0....0....0....1....0....1....0....1....0....0....1....0
%e A184710 ..1....0....0....1....1....1....2....0....1....0....2....0....0....2....0....1
%e A184710 ..1....0....2....0....0....0....0....1....0....1....0....0....0....0....1....0
%e A184710 ..1....0....0....1....1....1....0....0....1....0....1....0....0....1....1....0
%e A184710 ..0....0....0....0....0....0....0....0....0....0....0....1....1....0....0....1
%Y A184710 Row 10 of A184703.
%K A184710 nonn
%O A184710 1,1
%A A184710 _R. H. Hardin_, Jan 20 2011