A184733 a(n) = floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/4; complement of A184732.
3, 5, 8, 10, 13, 16, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 44, 47, 50, 52, 55, 58, 60, 63, 65, 68, 71, 73, 76, 78, 81, 84, 86, 89, 92, 94, 97, 99, 102, 105, 107, 110, 112, 115, 118, 120, 123, 126, 128, 131, 133, 136, 139, 141, 144, 147, 149, 152, 154, 157, 160, 162, 165, 167, 170, 173, 175, 178, 181, 183, 186, 188, 191, 194, 196, 199, 201, 204, 207, 209, 212, 215, 217, 220, 222, 225, 228, 230, 233, 236, 238, 241, 243, 246, 249, 251, 254, 256, 259, 262, 264, 267, 270, 272, 275, 277, 280, 283, 285, 288, 291, 293, 296, 298, 301, 304, 306, 309, 311, 314
Offset: 1
Keywords
Links
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
Programs
-
Maple
A184733 := proc(n) phi := (1+sqrt(5))/2 ; n+floor((n+1/4)*phi) ; end proc: seq(A184733(n),n=1..100) ; # R. J. Mathar, Sep 04 2016
-
Mathematica
r=(1+sqrt(5))/2, h=-1/4; s=r/(r-1); Table[Floor[n*r+h],{n,1,120}] (* A184732 *) Table[Floor[n*s+h-h*s],{n,1,120}] (*A184733 *)
Formula
a(n) = floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=-1/4.