cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184743 a(n) = floor(n*s + (s-1)/2), where s = sqrt(Pi)/(sqrt(Pi)-1).

This page as a plain text file.
%I A184743 #16 Dec 30 2024 12:42:49
%S A184743 2,5,7,9,12,14,16,19,21,23,25,28,30,32,35,37,39,41,44,46,48,51,53,55,
%T A184743 58,60,62,64,67,69,71,74,76,78,80,83,85,87,90,92,94,97,99,101,103,106,
%U A184743 108,110,113,115,117,119,122,124,126,129,131,133,136,138,140,142,145,147,149,152,154,156,158,161,163,165,168,170,172,175,177,179
%N A184743 a(n) = floor(n*s + (s-1)/2), where s = sqrt(Pi)/(sqrt(Pi)-1).
%H A184743 G. C. Greubel, <a href="/A184743/b184743.txt">Table of n, a(n) for n = 1..5000</a>
%t A184743 r=Pi^(1/2); h=-1/2; s=r/(r-1);
%t A184743 Table[Floor[n*r+h],{n,1,120}]  (* A184242 *)
%t A184743 Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184243 *)
%o A184743 (PARI) for(n=1,25, print1(floor((n+1/2)*(sqrt(Pi)/(sqrt(Pi) - 1)) - 1/2), ", ")) \\ _G. C. Greubel_, Jan 09 2017
%Y A184743 Cf. A184742 (numbers not in present sequence).
%K A184743 nonn
%O A184743 1,1
%A A184743 _Clark Kimberling_, Jan 20 2011
%E A184743 Edited by _N. J. A. Sloane_, Dec 30 2024