cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184757 Half the number of n X 5 binary arrays with no 1 having an adjacent 1 both above and to its left.

Original entry on oeis.org

16, 317, 6847, 145778, 3110914, 66363023, 1415755252, 30202770902, 644326291402, 13745636657969, 293240447607511, 6255800447755343, 133457166530876185, 2847088145920628222, 60737921547191898319, 1295743203159170280830
Offset: 1

Views

Author

R. H. Hardin, Jan 21 2011

Keywords

Comments

Column 5 of A184761.

Examples

			Some solutions for 3 X 5:
..1..1..0..0..0....0..0..0..0..0....1..0..1..0..1....0..0..1..1..1
..0..0..1..0..0....0..0..0..1..1....1..0..1..1..0....1..1..0..0..1
..0..0..1..0..0....0..0..0..1..0....1..1..0..1..0....1..0..0..0..0
		

Crossrefs

Cf. A184761.

Formula

Empirical: a(n) = 13*a(n-1) + 150*a(n-2) + 550*a(n-3) + 889*a(n-4) + 434*a(n-5) - 228*a(n-6) + 32*a(n-7).
Empirical g.f.: x*(16 + 109*x + 326*x^2 + 417*x^3 + 176*x^4 - 166*x^5 + 40*x^6) / (1 - 13*x - 150*x^2 - 550*x^3 - 889*x^4 - 434*x^5 + 228*x^6 - 32*x^7). - Colin Barker, Apr 14 2018