cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184776 Numbers m such that prime(m) is of the form floor(k*sqrt(2)); complement of A184779.

Original entry on oeis.org

1, 3, 4, 5, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 87, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110, 112, 114, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 136, 137, 138, 139, 141, 142, 143, 144
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2011

Keywords

Examples

			See A184774.
		

Crossrefs

Programs

  • Mathematica
    r=2^(1/2); s=r/(r-1);
    a[n_]:=Floor [n*r];  (* A001951 *)
    b[n_]:=Floor [n*s];  (* A001952 *)
    Table[a[n],{n,1,120}]
    t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1
    t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2
    t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3
    t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4
    t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5
    t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6
    (* the lists t1,t2,t3,t4,t5,t6 match the sequences
    A184774, A184775, A184776 ,A184777, A184778, A184779 *)
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import primepi, isprime
    def A184776_gen(): # generator of terms
        return map(primepi,filter(isprime,(isqrt(k**2<<1) for k in count(1))))
    A184776_list = list(islice(A184776_gen(),25)) # Chai Wah Wu, Jul 28 2022