A184778 Numbers k such that 2k + floor(k*sqrt(2)) is prime.
1, 4, 5, 7, 11, 14, 18, 21, 32, 41, 46, 48, 49, 56, 62, 79, 83, 86, 90, 93, 97, 114, 120, 123, 127, 130, 134, 137, 144, 165, 169, 172, 178, 181, 185, 188, 213, 220, 222, 223, 237, 243, 246, 250, 253, 257, 260, 267, 288, 302, 308, 311, 325, 329, 343, 346, 352, 360, 366, 369, 376
Offset: 1
Keywords
Examples
See A184774.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A001951 *) b[n_]:=Floor [n*s]; (* A001952 *) Table[a[n],{n,1,120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 (* the lists t1,t2,t3,t4,t5,t6 match the sequences A184774, A184775, A184776 ,A184777, A184778, A184779 *)
-
PARI
is(n)=isprime(sqrtint(2*n^2)+2*n) \\ Charles R Greathouse IV, May 22 2017
-
Python
from itertools import count, islice from math import isqrt from sympy import isprime def A184778_gen(): # generator of terms return filter(lambda k:isprime((k<<1)+isqrt(k**2<<1)), count(1)) A184778_list = list(islice(A184778_gen(),25)) # Chai Wah Wu, Jul 28 2022