A184779 Numbers m such that prime(m) is of the form 2k + floor(k*sqrt(2)); complement of A184776.
2, 6, 7, 9, 12, 15, 18, 20, 29, 34, 37, 38, 39, 43, 47, 57, 61, 62, 63, 66, 67, 77, 80, 81, 84, 86, 88, 91, 94, 103, 106, 107, 111, 113, 115, 116, 129, 133, 134, 135, 140, 145, 146, 147, 150, 151, 154, 156, 166, 173, 177, 178, 186, 188, 193, 194, 197, 201, 204, 205, 208
Offset: 1
Keywords
Examples
See A184774.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A001951 *) b[n_]:=Floor [n*s]; (* A001952 *) Table[a[n],{n,1,120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 (* the lists t1,t2,t3,t4,t5,t6 match the sequences A184774, A184775, A184776 ,A184777, A184778, A184779 *)
-
Python
from math import isqrt from itertools import count, islice from sympy import isprime, primepi def A184779_gen(): # generator of terms return map(primepi,filter(isprime,((k<<1)+isqrt(k**2<<1) for k in count(1)))) A184779_list = list(islice(A184779_gen(),25)) # Chai Wah Wu, Jul 28 2022