cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184810 Numbers m such that prime(m) has the form floor(k*r), where r=sqrt(2/3); complement of A184811.

Original entry on oeis.org

2, 3, 4, 8, 9, 10, 13, 14, 15, 17, 18, 19, 22, 23, 24, 26, 27, 28, 31, 34, 38, 39, 41, 42, 45, 46, 48, 49, 52, 53, 55, 56, 59, 60, 61, 66, 68, 72, 75, 76, 78, 79, 81, 82, 85, 86, 88, 89, 90, 92, 95, 96, 98, 99, 100, 102, 103, 106, 108, 109, 110, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 126, 128, 130, 131, 134, 135, 137, 139, 141, 142, 146, 147, 148, 149, 151, 152, 156, 157, 159, 162, 164, 165, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 180
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Crossrefs

Programs

  • Mathematica
    r=(2/3)^(1/2);s=(3/2)^(1/2); (* complementary because of joint ranking of i*sqrt(2) and j*sqrt(3) *)
    a[n_]:=n+Floor [n*r]; b[n_]:=n+Floor [n*s];
    Table[a[n],{n,1,120}]  (* A184808 *)
    Table[b[n],{n,1,120}]  (* A184809 *)
    t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}]
    t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}]
    t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3
    t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]
    t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]
    t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,300}];t6
    (* t3 and t6 match A184810 and A184811 *)