A184810 Numbers m such that prime(m) has the form floor(k*r), where r=sqrt(2/3); complement of A184811.
2, 3, 4, 8, 9, 10, 13, 14, 15, 17, 18, 19, 22, 23, 24, 26, 27, 28, 31, 34, 38, 39, 41, 42, 45, 46, 48, 49, 52, 53, 55, 56, 59, 60, 61, 66, 68, 72, 75, 76, 78, 79, 81, 82, 85, 86, 88, 89, 90, 92, 95, 96, 98, 99, 100, 102, 103, 106, 108, 109, 110, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 126, 128, 130, 131, 134, 135, 137, 139, 141, 142, 146, 147, 148, 149, 151, 152, 156, 157, 159, 162, 164, 165, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 180
Offset: 1
Keywords
Programs
-
Mathematica
r=(2/3)^(1/2);s=(3/2)^(1/2); (* complementary because of joint ranking of i*sqrt(2) and j*sqrt(3) *) a[n_]:=n+Floor [n*r]; b[n_]:=n+Floor [n*s]; Table[a[n],{n,1,120}] (* A184808 *) Table[b[n],{n,1,120}] (* A184809 *) t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}] t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}] t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3 t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}] t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}] t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,300}];t6 (* t3 and t6 match A184810 and A184811 *)