A184815 Numbers m such that prime(m) is of the form k+floor(ks/r)+floor(kt/r), where r=sqrt(2), s=sqrt(3), t=sqrt(5).
2, 4, 10, 12, 13, 16, 22, 29, 30, 36, 42, 44, 45, 49, 52, 57, 59, 60, 64, 70, 71, 76, 82, 84, 90, 91, 92, 97, 101, 103, 108, 111, 114, 115, 119, 123, 125, 138, 140, 142, 149, 150, 165, 171, 178, 180, 182, 185, 189, 191, 192, 193, 195, 198, 205, 211, 215, 217, 220, 222, 224, 233, 235, 236, 247, 248, 249, 252, 254, 255, 264, 265, 269, 273, 286, 295, 301, 302, 306, 307, 309, 316, 318, 325, 326, 327, 328, 329, 332, 336
Offset: 1
Keywords
Examples
See A184812.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
r=2^(1/2); s=3^(1/2); t=5^(1/2); a[n_]:=n+Floor [n*s/r]+Floor[n*t/r]; b[n_]:=n+Floor [n*r/s]+Floor[n*t/s]; c[n_]:=n+Floor[n*r/t]+Floor[n*s/t] Table[a[n],{n,1,120}] (* A184812 *) Table[b[n],{n,1,120}] (* A184813 *) Table[c[n],{n,1,120}] (* A184814 *) t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1; t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2; t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,600}];t3 t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4; t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5; t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,600}];t6 t7={};Do[If[PrimeQ[c[n]], AppendTo[t7,c[n]]],{n,1,600}];t7; t8={};Do[If[PrimeQ[c[n]], AppendTo[t8,n]],{n,1,600}];t8; t9={};Do[If[MemberQ[t7,Prime[n]],AppendTo[t9,n]],{n,1,600}];t9 (* Lists t3, t6, t9 match A184815, A184816, A184817. *)
Comments