cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184817 Numbers m such that prime(m) is of the form k+floor(kr/t)+floor(ks/t), where r=sqrt(2), s=sqrt(3), t=sqrt(5).

Original entry on oeis.org

5, 6, 8, 9, 11, 15, 17, 20, 25, 27, 28, 31, 32, 33, 35, 38, 43, 46, 47, 48, 51, 58, 61, 62, 63, 66, 67, 73, 74, 75, 77, 79, 85, 87, 88, 89, 94, 99, 100, 102, 104, 107, 110, 112, 116, 118, 120, 121, 122, 127, 128, 130, 132, 134, 136, 141, 144, 146, 147, 151, 153, 154, 155, 156, 163, 164, 166, 167, 170, 175, 177, 179, 181, 184, 186, 188, 194, 196, 199, 201, 202, 203, 204, 206, 209, 210, 213, 216, 218, 221, 223, 225, 226, 227, 228
Offset: 1

Views

Author

Clark Kimberling, Jan 23 2011

Keywords

Comments

See A184812 and A184814.

Crossrefs

Programs

  • Mathematica
    r=2^(1/2); s=3^(1/2); t=5^(1/2);
    a[n_]:=n+Floor[n*s/r]+Floor[n*t/r];
    b[n_]:=n+Floor[n*r/s]+Floor[n*t/s];
    c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]
    Table[a[n],{n,1,120}]  (* A184812 *)
    Table[b[n],{n,1,120}]  (* A184813 *)
    Table[c[n],{n,1,120}]  (* A184814 *)
    t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1;
    t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2;
    t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,600}];t3
    t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4;
    t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5;
    t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,600}];t6
    t7={};Do[If[PrimeQ[c[n]], AppendTo[t7,c[n]]],{n,1,600}];t7;
    t8={};Do[If[PrimeQ[c[n]], AppendTo[t8,n]],{n,1,600}];t8;
    t9={};Do[If[MemberQ[t7,Prime[n]],AppendTo[t9,n]],{n,1,600}];t9
    (* Lists t3, t6, t9 match A184815, A184816, A184817. *)