This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184824 #9 Dec 16 2024 22:19:16 %S A184824 2,6,9,14,17,21,24,29,32,36,39,44,47,50,54,58,61,65,69,73,76,80,84,88, %T A184824 91,95,100,102,106,110,114,117,121,125,129,132,136,140,144,147,152, %U A184824 154,158,161,166,169,173,176,181,184,188,191,196,200,203,207,210,214,217,222,225,229,232,237,240,244,248,252,255,258,262,266,269,273,277,281,284,288,292,296,300,304,307,310,314,318,322,325,329,333,337,340,345,348,352,355,359,362,366,369,374,377,381,384,389,392,396,401,404,408 %N A184824 a(n) = n + floor(n*t) + floor(n/t) + floor(n/t^2), where t is the tetranacci constant. %C A184824 This is one of four sequences that partition the positive integers. %C A184824 Given t is the tetranacci constant, then the following sequences are disjoint: %C A184824 . A184823(n) = n + [n/t] + [n/t^2] + [n/t^3], %C A184824 . A184824(n) = n + [n*t] + [n/t] + [n/t^2], %C A184824 . A184825(n) = n + [n*t] + [n*t^2] + [n/t], %C A184824 . A184826(n) = n + [n*t] + [n*t^2] + [n*t^3], where []=floor. %C A184824 This is a special case of Clark Kimberling's results given in A184812. %F A184824 Limit a(n)/n = t^2 = 3.7154951693276375317543272... %F A184824 a(n) = n + floor(n*p/r) + floor(n*q/r) + floor(n*s/r), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant. %e A184824 Let t be the tetranacci constant, then t^2 = 1 + t + 1/t + 1/t^2 and: %e A184824 t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532... %o A184824 (PARI) {a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n/t)+floor(n/t^2)} %Y A184824 Cf. A184823, A184825, A184826; A184812, A086088. %K A184824 nonn %O A184824 1,1 %A A184824 _Paul D. Hanna_, Jan 23 2011