This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184836 #6 Mar 30 2012 18:37:25 %S A184836 2,6,9,14,17,21,24,30,33,37,40,45,48,52,55,61,64,68,71,76,79,83,87,92, %T A184836 95,99,102,107,110,113,118,122,125,129,133,137,140,145,149,153,156, %U A184836 160,164,168,171,176,180,184,187,191,195,199,202,207,211,215,218,223,226,229,234,238,242,245,249,253,257,260,265,269,273,276,280,284,288,292,296,300,304,307,311,315,319,323,327,331,335,338,342,345,349,353,358,361,365,368,373,376,381,384,389,392,396,399,404,407,412,415,420,423 %N A184836 a(n) = n + floor(n*t) + floor(n/t) + floor(n/t^2) + floor(n/t^3), where t is the pentanacci constant. %C A184836 This is one of five sequences that partition the positive integers. %C A184836 Given t is the pentanacci constant, then the following sequences are disjoint: %C A184836 . A184835(n) = n + [n/t] + [n/t^2] + [n/t^3] + [n/t^4], %C A184836 . A184836(n) = n + [n*t] + [n/t] + [n/t^2] + [n/t^3], %C A184836 . A184837(n) = n + [n*t] + [n*t^2] + [n/t] + [n/t^2], %C A184836 . A184838(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n/t], %C A184836 . A184839(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n*t^4], where []=floor. %C A184836 This is a special case of Clark Kimberling's results given in A184812. %F A184836 Limit a(n)/n = t^2 = 3.8649524691694932164414964... %F A184836 a(n) = n + floor(n*p/s) + floor(n*q/s) + floor(n*r/s) + floor(n*u/s), where p=t, q=t^2, r=t^3, s=t^4, u=t^5, and t is the pentanacci constant. %e A184836 Given t = pentanacci constant, then t^2 = 1 + t + 1/t + 1/t^2 + 1/t^3, %e A184836 t = 1.965948236645..., t^2 = 3.864952469169..., t^3 = 7.598296491482..., t^4 = 14.93785758893..., t^5 = 29.36705478623... %o A184836 (PARI) {a(n)=local(t=real(polroots(1+x+x^2+x^3+x^4-x^5)[1])); n+floor(n*t)+floor(n/t)+floor(n/t^2)+floor(n/t^3)} %Y A184836 Cf. A184835, A184837, A184838, A184839; A184812, A103814. %K A184836 nonn %O A184836 1,1 %A A184836 _Paul D. Hanna_, Jan 23 2011