This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184859 #12 Jul 08 2025 09:25:18 %S A184859 2,3,5,11,13,19,23,29,31,37,47,53,61,71,73,79,83,89,97,107,113,131, %T A184859 139,149,157,163,167,173,181,191,193,197,199,223,227,233,239,241,251, %U A184859 257,269,277,283,293,307,311,317,337,349,353,359,367,379,383,401,409,419,421,443,461,463,479,487,503,521,523,547,557,563,571,587,599,607,613,631,641,647,659,673,683,691,701,709,733,739,743,751,757,769,773,809,811,827,853,859,877,883,887,911,919,929,937,947,953,971 %N A184859 Primes of the form floor(kr+h), where r=(1+sqrt(5))/2 and h=1/2. %C A184859 See "conjecture generalized" at A184774. %e A184859 The sequence U(n)=floor(n*r+h) begins with %e A184859 2,3,5,6,8,10,11,13,15,16,18,19,..., %e A184859 which includes the primes U(1)=2, U(2)=3,... %t A184859 r=(1+5^(1/2))/2; h=1/2;s=r/(r-1); %t A184859 a[n_]:=Floor [n*r+h]; %t A184859 Table[a[n],{n,1,120}] (* A007067 *) %t A184859 t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1 %t A184859 t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2 %t A184859 t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3 %t A184859 (* Lists t1, t2, t3 match A184859, A184860, A184861. *) %t A184859 Select[Floor[GoldenRatio*Range[600]+1/2],PrimeQ] (* _Harvey P. Dale_, Jan 02 2013 *) %Y A184859 Cf. A184774, A184859, A184860, A184861. %K A184859 nonn %O A184859 1,1 %A A184859 _Clark Kimberling_, Jan 23 2011