cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184861 Numbers m such that prime(m) is of the form floor(nr+h), where r=(1+sqrt(5))/2 and h=1/2; complement of A184864.

This page as a plain text file.
%I A184861 #4 Mar 30 2012 18:57:17
%S A184861 1,2,3,5,6,8,9,10,11,12,15,16,18,20,21,22,23,24,25,28,30,32,34,35,37,
%T A184861 38,39,40,42,43,44,45,46,48,49,51,52,53,54,55,57,59,61,62,63,64,66,68,
%U A184861 70,71,72,73,75,76,79,80,81,82,86,89,90,92,93,96,98,99,101,102,103,105,107,109,111,112,115,116,118,120,122,124,125,126,127,130,131,132,133,134,136,137,140,141,144,147,149,151,153,154,156,157,158,159,161,162,164
%N A184861 Numbers m such that prime(m) is of the form floor(nr+h), where r=(1+sqrt(5))/2 and h=1/2; complement of A184864.
%e A184861 See A184859.
%t A184861 r=(1+5^(1/2))/2; h=1/2; s=r/(r-1);
%t A184861 a[n_]:=Floor [n*r+h];
%t A184861 Table[a[n], {n, 1, 120}]  (* A007067 *)
%t A184861 t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
%t A184861 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
%t A184861 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
%t A184861 (* Lists t1, t2, t3 match A184859, A184860, A184861. *)
%Y A184861 Cf. A184859, A184864.
%K A184861 nonn
%O A184861 1,2
%A A184861 _Clark Kimberling_, Jan 23 2011