This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184862 #7 Sep 18 2024 19:41:31 %S A184862 7,17,41,43,59,67,101,103,109,127,137,151,179,211,229,263,271,281,313, %T A184862 331,347,373,389,397,431,433,439,449,457,467,491,499,509,541,569,577, %U A184862 593,601,617,619,643,653,661,677,719,727,761,787,797,821,823,829,839,857,863,881,907,941,967,983,991,1009,1033,1049,1051,1069,1093,1109,1117,1151,1153,1187,1193,1213,1229,1237,1279,1289,1297,1321,1373,1381,1399,1423,1433,1439,1483,1499,1543,1549,1559,1567 %N A184862 Primes of the form floor(n+nr-r/2), where r=(1+sqrt(5))/2. %C A184862 See "conjecture generalized" at A184774. %t A184862 r=(1+5^(1/2))/2; %t A184862 a[n_]:=Floor [n+n*r-r/2]; %t A184862 Table[a[n],{n,1,120}] (* A007064 *) %t A184862 t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1 %t A184862 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2 %t A184862 t3={}; Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3 %t A184862 *( Lists t1, t2, t3 match A184862, A184863, A184864.) %t A184862 With[{gr=GoldenRatio},Select[Table[Floor[n+n*gr-gr/2],{n,2000}],PrimeQ]] (* _Harvey P. Dale_, Sep 18 2024 *) %Y A184862 Cf. A007064, A184774, A184859, A184863, A184864. %K A184862 nonn %O A184862 1,1 %A A184862 _Clark Kimberling_, Jan 23 2011