This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184868 #12 Jan 30 2018 15:56:48 %S A184868 2,5,19,29,43,53,67,73,97,101,131,149,179,193,227,241,251,271,347,353, %T A184868 367,401,439,449,463,487,521,541,599,613,647,661,691,719,739,743,773, %U A184868 787,797,811,821,859,883,937,941,947,971,1009,1019,1033,1087,1091,1163,1193,1217,1231,1279,1289,1303,1361,1367,1381,1429,1439,1453,1483,1487,1511,1531,1559,1579,1613,1627,1637,1699,1709,1733,1753,1777,1787,1801,1811,1873,1907,1931,1951,1979,1999 %N A184868 Primes of the form floor((k-1/2)*(2+sqrt(2))+1/2); i.e., primes in A063957. %C A184868 See "conjecture generalized" at A184774. %H A184868 G. C. Greubel, <a href="/A184868/b184868.txt">Table of n, a(n) for n = 1..10000</a> %t A184868 a[n_]:=Floor [(n-1/2)*(2+2^(1/2))+1/2]; %t A184868 Table[a[n],{n,1,120}] (* A063957 *) %t A184868 t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1 %t A184868 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2 %t A184868 t3={}; Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,400}];t3 %t A184868 (* Lists t1, t2, t3 match A184868, A184869, A184870. *) %o A184868 (PARI) lista(nn) = for (k=1, nn, if (isprime(p=floor((k-1/2)*(2+sqrt(2))+1/2)), print1(p, ", "))); \\ _Michel Marcus_, Jan 30 2018 %Y A184868 Cf. A184774, A184869, A184870. %K A184868 nonn %O A184868 1,1 %A A184868 _Clark Kimberling_, Jan 23 2011