This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184884 #15 Sep 08 2022 08:45:55 %S A184884 1,1,2,6,11,27,60,132,301,669,1502,3370,7543,16919,37912,84968,190457, %T A184884 426841,956698,2144238,4805827,10771315,24141588,54108332,121272549, %U A184884 271806901,609198390,1365390546,3060236911,6858880431,15372743856,34454786384,77223188593,173079605553,387921692082,869445237846 %N A184884 Diagonal sums of number triangle A184883. %H A184884 G. C. Greubel, <a href="/A184884/b184884.txt">Table of n, a(n) for n = 0..1000</a> %H A184884 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,2,-1,1). %F A184884 G.f.: (1-x^2)/(1-x-2*x^2-2*x^3+x^4-x^5). %F A184884 a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..k} C(2*n-4*k,j)*C(k,j)*2^j. %F A184884 a(n) = Sum_{k=0..floor(n/2)} Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - _G. C. Greubel_, Nov 19 2021 %t A184884 LinearRecurrence[{1,2,2,-1,1}, {1,1,2,6,11}, 45] (* _G. C. Greubel_, Nov 19 2021 *) %o A184884 (Magma) %o A184884 A184883:= func< n,k | (&+[Binomial(k,j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >; %o A184884 A184884:= func< n | (&+[A184883(n, j): j in [0..Floor(n/2)]]) >; %o A184884 [A184884(n): n in [0..40]]; // _G. C. Greubel_, Nov 19 2021 %o A184884 (Sage) %o A184884 def A184883(n,k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) ) %o A184884 def A184884(n): return sum( A184883(n, j) for j in (0..n//2) ) %o A184884 [A184884(n) for n in (0..40)] # _G. C. Greubel_, Nov 19 2021 %Y A184884 Cf. A183883. %K A184884 nonn,easy %O A184884 0,3 %A A184884 _Paul Barry_, Jan 24 2011