This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184890 #7 Oct 07 2020 07:47:47 %S A184890 1,60,12600,3640000,1218262500,443837394000,170877396690000, %T A184890 68390813462400000,28171137810976875000,11864338450927462500000, %U A184890 5085530033605547526000000,2211345876971860770960000000 %N A184890 a(n) = C(2n,n) * (5^n/n!^2) * Product_{k=0..n-1} (5k+2)*(5k+3). %F A184890 Self-convolution of A184889: %F A184890 A184889(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+2)*(10k+3). %F A184890 a(n) ~ sqrt(5 + sqrt(5)) * 2^(2*n - 3/2) * 5^(3*n) / (Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Oct 07 2020 %e A184890 G.f.: A(x) = 1 + 60*x + 12600*x^2 + 3640000*x^3 +... %e A184890 A(x)^(1/2) = 1 + 30*x + 5850*x^2 + 1644500*x^3 +...+ A184889(n)*x^n +... %t A184890 Table[Binomial[2*n, n] * 5^n / n!^2 * Product[(5*k + 2)*(5*k + 3), {k, 0, n - 1}], {n, 0, 20}] (* _Vaclav Kotesovec_, Oct 07 2020 *) %o A184890 (PARI) {a(n)=(2*n)!/n!^2*(5^n/n!^2)*prod(k=0,n-1,(5*k+2)*(5*k+3))} %Y A184890 Cf. A184889, A184892. %K A184890 nonn %O A184890 0,2 %A A184890 _Paul D. Hanna_, Jan 25 2011