This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184891 #14 Jul 04 2014 02:41:16 %S A184891 1,20,3850,1078000,355066250,128107903000,49001272897500, %T A184891 19520507080800000,8012558140822125000,3365274419145292500000, %U A184891 1439327869068441602250000,624739666805574817770000000 %N A184891 a(n) = (5^n/n!^2) * Product_{k=0..n-1} (10k+1)*(10k+4). %H A184891 Vincenzo Librandi, <a href="/A184891/b184891.txt">Table of n, a(n) for n = 0..100</a> %F A184891 Self-convolution yields Sum_{k=0..n} a(n-k)*a(k) = A184892(n) where %F A184891 . A184892(n) = C(2n,n) * (5^n/n!^2)*Product_{k=0..n-1} (5k+1)*(5k+4). %e A184891 G.f.: A(x) = 1 + 20*x + 3850*x^2 + 1078000*x^3 +... %e A184891 A(x)^2 = 1 + 40*x + 8100*x^2 + 2310000*x^3 +...+ A184892(n)*x^n +... %t A184891 Table[5^n/(n!)^2 Product[(10k+1)(10k+4),{k,0,n-1}],{n,0,20}] (* _Harvey P. Dale_, Feb 02 2012 *) %t A184891 FullSimplify[Table[2^(2*n) * 5^(3*n) * Gamma[n+1/10] * Gamma[n+2/5] / (Gamma[2/5] * Gamma[1/10] * Gamma[n+1]^2), {n, 0, 15}]] (* _Vaclav Kotesovec_, Jul 03 2014 *) %o A184891 (PARI) {a(n)=(5^n/n!^2)*prod(k=0,n-1,(10*k+1)*(10*k+4))} %Y A184891 Cf. A184892; variants: A184424, A178529, A092870, A184895, A184897. %K A184891 nonn %O A184891 0,2 %A A184891 _Paul D. Hanna_, Jan 25 2011