cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184897 a(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+1)*(16k+7).

This page as a plain text file.
%I A184897 #13 Jul 04 2014 03:01:05
%S A184897 1,56,43792,50098048,67507119680,99694514343424,156121609461801984,
%T A184897 254663020429855285248,428056704465033002591232,
%U A184897 736257531679856764456919040,1289628692490437108622739390464
%N A184897 a(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+1)*(16k+7).
%H A184897 Vincenzo Librandi, <a href="/A184897/b184897.txt">Table of n, a(n) for n = 0..100</a>
%F A184897 Self-convolution yields Sum_{k=0..n} a(n-k)*a(k) = A184898(n) where A184898(n) = C(2n,n) * (8^n/n!^2)*Product_{k=0..n-1} (8k+1)*(8k+7).
%e A184897 G.f.: A(x) = 1 + 56*x + 43792*x^2 + 50098048*x^3 +...
%e A184897 A(x)^2 = 1 + 112*x + 90720*x^2 + 105100800*x^3 +...+ A184898(n)*x^n +...
%t A184897 FullSimplify[Table[2^(11*n) * Gamma[n+1/16] * Gamma[n+7/16] / (Gamma[n+1]^2 * Gamma[1/16] * Gamma[7/16]), {n, 0, 15}]] (* _Vaclav Kotesovec_, Jul 03 2014 *)
%o A184897 (PARI) {a(n)=(8^n/n!^2)*prod(k=0,n-1,(16*k+1)*(16*k+7))}
%Y A184897 Cf. A184898; variants: A184424, A178529, A184891, A092870, A184895.
%K A184897 nonn
%O A184897 0,2
%A A184897 _Paul D. Hanna_, Jan 25 2011