cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184902 Primes that are not factors of m^2 + m + 11 (A048058).

This page as a plain text file.
%I A184902 #36 Mar 08 2022 12:06:10
%S A184902 2,3,5,7,19,29,37,61,71,73,89,113,131,137,149,151,157,163,179,191,199,
%T A184902 211,223,227,233,241,257,263,277,313,331,347,349,373,383,389,409,419,
%U A184902 421,433,449,457,463,467,491,499,503,521,523,571,577
%N A184902 Primes that are not factors of m^2 + m + 11 (A048058).
%C A184902 The discriminant of this polynomial is -43. These are the primes that are not a square (mod 43). These primes are congruent to {2, 3, 5, 7, 8, 12, 18, 19, 20, 22, 26, 27, 28, 29, 30, 32, 33, 34, 37, 39, 42} (mod 43). - _T. D. Noe_, May 22 2011
%C A184902 Inert rational primes in the field Q(sqrt(-43)). - _N. J. A. Sloane_, Dec 25 2017
%H A184902 Zak Seidov, <a href="/A184902/b184902.txt">Table of n, a(n) for n = 1..5000</a>
%H A184902 <a href="https://oeis.org/wiki/Index_to_OEIS:_Section_Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a>
%F A184902 a(n) ~ 2n log n. - _Charles R Greathouse IV_, May 22 2011
%t A184902 Reap[Do[p = Prime[n]; ta = Table[Mod[m(m + 1) + 11, p],{m, 0, p/2 + 1}]; If[FreeQ[ta, 0], Sow[p]], {n, 1000}]][[2, 1]]
%t A184902 Select[Prime[Range[100]], JacobiSymbol[#, 43] == -1 &] (* _T. D. Noe_, May 22 2011 *)
%Y A184902 Cf. A048058 (n^2 + n + 11), A048059 (primes of the form n^2 + n + 11), A048097 (n^2 + n + 11 is prime).
%K A184902 nonn,easy
%O A184902 1,1
%A A184902 _Zak Seidov_, May 18 2011