cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184918 n+[rn/t]+[sn/t]+[un/t], where []=floor and r=1, s=2^(1/4), t=s^2, u=s^3.

This page as a plain text file.
%I A184918 #4 Mar 30 2012 18:57:17
%S A184918 2,6,10,13,17,22,24,28,32,36,40,44,47,50,54,59,63,66,69,73,76,81,85,
%T A184918 88,92,95,100,103,107,111,114,118,122,126,129,133,138,140,144,148,151,
%U A184918 155,160,163,166,170,174,178,182,186,189,192,197,201,204,208,211,215,219,223,227,230,233,238,241,245,249,253,257,260,264,267,271,276,280,282,286,290,293,298,302,304,308,312,317,320,324,327,330,335,339,343,346,350,353,357,361,365,369,372,376,380,383,387,391,395,398,402,406,409,414,418,421,424,428,432,436,440,444,446
%N A184918 n+[rn/t]+[sn/t]+[un/t], where []=floor and r=1, s=2^(1/4), t=s^2, u=s^3.
%C A184918 The sequences A184916-A184919 partition the positive integers:
%C A184918   A184916: 4,9,15,19,25,31,35,41,...
%C A184918   A184917: 3,7,12,16,21,26,29,34,...
%C A184918   A184918: 2,6,10,13,17,22,24,28,...
%C A184918   A184919: 1,5,8,11,14,18,20,23,27,...
%C A184918 The joint ranking method of A184812 is extended here to four numbers r,s,t,u, as follows:  jointly rank the sets {h*r}, {i*s}, {j*t}, {k*u}, h>=1, i>=1, j>=1, k>=1.
%C A184918 The position of n*t in the joint ranking is
%C A184918 n+[rn/t]+[sn/t]+[un/t], and likewise for the
%C A184918 positions of n*r, n*s, and n*u.
%t A184918 r=1; s=2^(1/4); t=2^(1/2); u=2^(3/4);
%t A184918 a[n_]:=n+Floor[n*s/r]+Floor[n*t/r]+Floor[n*u/r];
%t A184918 b[n_]:=n+Floor[n*r/s]+Floor[n*t/s]+Floor[n*u/s];
%t A184918 c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]+Floor[n*u/t];
%t A184918 d[n_]:=n+Floor[n*r/u]+Floor[n*s/u]+Floor[n*t/u];
%t A184918 Table[a[n],{n,1,120}]  (* A184916 *)
%t A184918 Table[b[n],{n,1,120}]  (* A184917 *)
%t A184918 Table[c[n],{n,1,120}]  (* A184918 *)
%t A184918 Table[d[n],{n,1,120}]  (* A184919 *)
%Y A184918 Cf. A184912, A184916, A184917, A184919.
%K A184918 nonn
%O A184918 1,1
%A A184918 _Clark Kimberling_, Jan 26 2011