A184922 a(n) = n + [rn/t] + [sn/t] + [un/t], where []=floor and r=2^(1/2), s=r+1, t=r+2, u=r+3.
2, 5, 9, 12, 16, 19, 22, 26, 29, 33, 36, 39, 43, 46, 50, 53, 57, 60, 63, 67, 70, 74, 77, 80, 84, 87, 91, 94, 98, 101, 104, 108, 111, 115, 118, 121, 125, 128, 132, 135, 138, 142, 145, 149, 152, 156, 159, 162, 166, 169, 173, 176, 179, 183, 186, 190, 193, 197, 200, 203, 207, 210, 214, 217, 220, 224, 227, 231, 234, 237, 241, 244, 248, 251, 255, 258, 261, 265, 268, 272, 275, 278, 282, 285, 289, 292, 296, 299, 302, 306, 309, 313, 316, 319, 323, 326, 330, 333, 337, 340, 343, 347, 350, 354, 357, 360, 364, 367, 371, 374, 377, 381, 384, 388, 391, 395, 398, 401, 405, 408
Offset: 1
Keywords
Programs
-
Mathematica
z = 100; zz = 10; u = Table[Floor[n Sqrt[2]], {n, 1, z}] u1 = Complement[Range[Max[u]], u] v = Table[Floor[n (1 + Sqrt[2])], {n, 1, z}] v1 = Complement[Range[Max[v]], v] Table[u[[v[[n]]]], {n, 1, zz}]; (* A184922 *) Table[u[[v1[[n]]]], {n, 1, zz}]; (* A188376 *) Table[u1[[v[[n]]]], {n, 1, zz}]; (* A359351 *) Table[u1[[v1[[n]]]], {n, 1, zz}]; (* A188396 *)
Formula
a(n) = floor(n*(2+sqrt(2))) - 1. - Michel Dekking, Feb 22 2018
Extensions
Name corrected by Michel Dekking, Feb 22 2018
Edited by Clark Kimberling, Dec 27 2022
Comments