This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184930 #9 Apr 11 2021 01:31:17 %S A184930 3,7,12,16,22,25,29,34,39,44,48,51,56,61,66,70,75,79,83,88,92,97,102, %T A184930 105,110,114,120,124,129,132,136,142,146,151,155,159,164,168,173,177, %U A184930 182,186,190,195,200,205,209,212,218,222,227,231,235,240,244,249,253,259,263,266,271,275,281,285,289,293,298,303,307,311,316,320,325,329,334,339,343,347,351,356,361,365,369,373,379,383,388,392,396,401,405,410,414,419,423,427,432,437,442,446,449,454,459,464,468,472,477,481,486,490,494,500,503,508,512,518,522,526,530,534 %N A184930 a(n) = n + [rn/t] + [sn/t] + [un/t], where []=floor and r=sin(Pi/2), s=sin(Pi/3), t=sin(Pi/4), u=sin(Pi/5). %C A184930 The sequences A184924-A184928 partition the positive integers: %C A184930 A184928: 1, 5, 6, 11, 14, 18, 21, 23, 27, ... %C A184930 A184929: 2, 6, 10, 13, 17, 20, 24, 28, 32, ... %C A184930 A184930: 3, 7, 12, 16, 22, 25, 29, 34, 39, ... %C A184930 A184931: 4, 9, 15, 19, 26, 31, 36, 41, 47, ... %C A184930 Jointly rank the sets {h*r}, {i*s}, {j*t}, {k*u}, where h>=1, i>=1, j>=1, k>=1. The position of n*t in the joint ranking is n + [rn/t] + [sn/t] + [un/t], and likewise for the positions of n*s, n*t, and n*u. %t A184930 r=Sin[Pi/2]; s=Sin[Pi/3]; t=Sin[Pi/4]; u=Sin[Pi/5]; %t A184930 a[n_]:=n+Floor[n*s/r]+Floor[n*t/r]+Floor[n*u/r]; %t A184930 b[n_]:=n+Floor[n*r/s]+Floor[n*t/s]+Floor[n*u/s]; %t A184930 c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]+Floor[n*u/t]; %t A184930 d[n_]:=n+Floor[n*r/u]+Floor[n*s/u]+Floor[n*t/u]; %t A184930 Table[a[n],{n,1,120}] (* A184928 *) %t A184930 Table[b[n],{n,1,120}] (* A184929 *) %t A184930 Table[c[n],{n,1,120}] (* A184930 *) %t A184930 Table[d[n],{n,1,120}] (* A184931 *) %Y A184930 Cf. A184928, A184929, A184931. %K A184930 nonn %O A184930 1,1 %A A184930 _Clark Kimberling_, Jan 26 2011