cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184970 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth exactly g.

This page as a plain text file.
%I A184970 #20 Oct 17 2024 08:27:33
%S A184970 1,5,1547,21609300,1,733351105933,1
%N A184970 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth exactly g.
%C A184970 The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g-2 when 2n reaches A054760(7,g).
%H A184970 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_eq_g_index">Index of sequences counting connected k-regular simple graphs with girth exactly g</a>
%H A184970 Jason Kimberley, <a href="/A184970/a184970.txt">Incomplete table of i, n, g, C(n,g)=a(i) for row n = 4..11</a>
%e A184970 1;
%e A184970 5;
%e A184970 1547;
%e A184970 21609300, 1;
%e A184970 733351105933, 1;
%e A184970 ?, 8;
%e A184970 ?, 741;
%e A184970 ?, 2887493;
%Y A184970 Connected 7-regular simple graphs with girth at least g: A184971 (triangle); chosen g: A014377 (g=3), A181153 (g=4).
%Y A184970 Connected 7-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184973 (g=3), A184974 (g=4).
%Y A184970 Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), this sequence (k=7), A184980 (k=8).
%K A184970 nonn,hard,more,tabf
%O A184970 4,2
%A A184970 _Jason Kimberley_, Feb 25 2011