This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184971 #11 May 01 2014 02:36:25 %S A184971 1,5,1547,21609301,1,733351105934,1 %N A184971 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth at least g. %C A184971 The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g-2 when 2n reaches A054760(7,g). %H A184971 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %e A184971 1; %e A184971 5; %e A184971 1547; %e A184971 21609301, 1; %e A184971 733351105934, 1; %e A184971 ?, 8; %e A184971 ?, 741; %e A184971 ?, 2887493; %Y A184971 Connected 7-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A014377 (g=3), A181153 (g=4). %Y A184971 Connected 7-regular simple graphs with girth exactly g: A184970 (triangle); chosen g: A184973 (g=3), A184974 (g=4). %Y A184971 Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), this sequence (k=7), A184981 (k=8). %K A184971 nonn,hard,more,tabf %O A184971 4,2 %A A184971 _Jason Kimberley_, Jan 10 2012