This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184995 #41 Jan 09 2025 09:34:30 %S A184995 2,3,3,3,5,5,3,7,3,5,5,7,3,7,3,5,11,5,7,11,3,7,13,5,11,7,11,13,3,13,3, %T A184995 5,11,17,5,7,13,17,7,19,3,11,17,5,11,13,19,3,7,13,3,5,17,23,5,7,11,17, %U A184995 19,3,7,13,19,5,11,23,7,11,13,17,23,3,13,19,5,11,17,29,7,13,17,19,23,29 %N A184995 Irregular triangle T, read by rows, in which row n lists the primes p <= n such that 2n-p is also prime. %C A184995 Row n has first entry A020481(n), length A045917(n), and last entry A112823(n). %C A184995 Each row is the prefix to the middle of the corresponding row of A171637. %C A184995 The Goldbach conjecture states that this irregular Goldbach triangle has in each row at least one entry (A045917(n) >= 1). - _Wolfdieter Lang_, May 14 2016 %H A184995 Jason Kimberley, <a href="/A184995/b184995.txt">Table of n, a(n) for n = 2..1000 (flattened 2..26552)</a> %H A184995 OEIS (Plot 2), <a href="/plot2a?name1=A198292&name2=A184995&tform1=untransformed&tform2=untransformed&shift=0&radiop1=xy&drawpoints=true">Plot of (n,p)</a> %H A184995 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %F A184995 T(n,i) = n - A182138(n,i). - _Jason Kimberley_, Sep 25 2012 %e A184995 The irregular triangle T(n, i) starts: %e A184995 n, 2*n\i 1 2 3 4 5 6 ... %e A184995 2, 4 2 %e A184995 3, 6 3 %e A184995 4, 8 3 %e A184995 5, 10 3 5 %e A184995 6, 12 5 %e A184995 7, 14 3 7 %e A184995 8, 16 3 5 %e A184995 9, 18 5 7 %e A184995 10, 20 3 7 %e A184995 11, 22 3 5 11 %e A184995 12, 24 5 7 11 %e A184995 13, 26 3 7 13 %e A184995 14, 28 5 11 %e A184995 15, 30 7 11 13 %e A184995 16, 32 3 13 %e A184995 17, 34 3 5 11 17 %e A184995 18, 36 5 7 13 17 %e A184995 19, 38 7 19 %e A184995 20, 40 3 11 17 %e A184995 21, 42 5 11 13 19 %e A184995 22, 44 3 7 13 %e A184995 23, 46 3 5 17 23 %e A184995 24, 48 5 7 11 17 19 %e A184995 25, 50 3 7 13 19 %e A184995 26, 52 5 11 23 %e A184995 27, 54 7 11 13 17 23 %e A184995 28, 56 3 13 19 %e A184995 29, 58 5 11 17 29 %e A184995 30, 60 7 13 17 19 23 29 %e A184995 ... reformatted - _Wolfdieter Lang_, May 14 2016 %p A184995 T:= n-> seq(`if`(andmap(isprime, [p, 2*n-p]), p, NULL), p=2..n): %p A184995 seq(T(n), n=2..40); # _Alois P. Heinz_, Jan 09 2025 %t A184995 Table[Select[Prime@ Range@ PrimePi@ n, PrimeQ[2 n - #] &], {n, 2, 30}] // Flatten (* _Michael De Vlieger_, May 14 2016 *) %t A184995 T[n_] := Table[If[PrimeQ[p] && PrimeQ[2n-p], p, Nothing], {p, 2, n}]; %t A184995 Table[T[n], {n, 2, 30}] // Flatten (* _Jean-François Alcover_, Jan 09 2025, after _Alois P. Heinz_ in A182138 *) %o A184995 (Magma) A184995 := func<n|[p:p in PrimesUpTo(n)|IsPrime(2*n-p)]>; %o A184995 &cat[A184995(n):n in [2..30]]; %Y A184995 Related triangles: A154720, A154721, A154722, A154723, A154724, A154725, A154726, A154727, A171637, A182138. %K A184995 nonn,tabf,easy %O A184995 2,1 %A A184995 _Jason Kimberley_, Sep 03 2011