This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185025 #20 Jan 21 2023 09:08:00 %S A185025 1,1,3,1,18,9,163,90,3,1950,1100,75,28821,16245,1575,15,505876,283122, %T A185025 33810,735,10270569,5699932,780150,26460,105,236644092,130267440, %U A185025 19615932,884520,8505,6098971555,3332614725,538325550,29619450,467775,945 %N A185025 Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n} -> {1,2,...,n} that have exactly k 2-cycles for n >= 0 and 0 <= k <= floor(n/2). %C A185025 It appears that as n gets large, row n conforms to a Poisson distribution with mean = 1/2. In other words, as n gets large, T(n,k) approaches n^n/(2^k*k!*e^(1/2)). %F A185025 E.g.f.: exp((T(x)^2/2)*(y-1))/(1 - T(x)) where T(x) is the e.g.f. for A000169. %F A185025 Sum_{k=1..floor(n/2)} k * T(n,k) = A081131(n). %e A185025 Triangle begins: %e A185025 1; %e A185025 1; %e A185025 3, 1; %e A185025 18, 9; %e A185025 163, 90, 3; %e A185025 1950, 1100, 75; %e A185025 28821, 16245, 1575, 15; %e A185025 505876, 283122, 33810, 735; %e A185025 10270569, 5699932, 780150, 26460, 105; %e A185025 236644092, 130267440, 19615932, 884520, 8505; %e A185025 6098971555, 3332614725, 538325550, 29619450, 467775, 945; %e A185025 ... %t A185025 nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}]; Range[0,nn]! CoefficientList[Series[Exp[t^2/2(y-1)]/(1-t), {x,0,nn}], {x,y}]//Grid %Y A185025 Column k=0 gives A089466. %Y A185025 Cf. A000169, A081131. %K A185025 nonn,tabf %O A185025 0,3 %A A185025 _Geoffrey Critzer_, Dec 24 2012