This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185029 #6 Dec 24 2012 17:26:33 %S A185029 1,1,2,65,3524,1364432,1445333132,7913299718555,162327934705456532, %T A185029 14083866155101076361024,5251111824344114834186373747, %U A185029 7956883819596423111541696080219295,51760975171209084256721290749117849746987,1424616119143714906580708999710589586791029920856 %N A185029 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n^4*x)^n/n! * exp(-n*x*A(n^4*x)). %C A185029 Compare to the LambertW identity: %C A185029 Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)). %e A185029 O.g.f.: A(x) = 1 + x + 2*x^2 + 65*x^3 + 3524*x^4 + 1364432*x^5 +... %e A185029 where %e A185029 A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2^4*x)^2/2!*exp(-2*x*A(2^4*x)) + 3^3*x^3*A(3^4*x)^3/3!*exp(-3*x*A(3^4*x)) + 4^4*x^4*A(4^4*x)^4/4!*exp(-4*x*A(4^4*x)) + 5^5*x^5*A(5^4*x)^5/5!*exp(-5*x*A(5^4*x)) +... %e A185029 simplifies to a power series in x with integer coefficients. %o A185029 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^k*x^k*subst(A, x, k^4*x)^k/k!*exp(-k*x*subst(A, x, k^4*x)+x*O(x^n)))); polcoeff(A, n)} %o A185029 for(n=0,16,print1(a(n),", ")) %Y A185029 Cf. A218672, A218681, A219342. %K A185029 nonn %O A185029 0,3 %A A185029 _Paul D. Hanna_, Dec 24 2012