This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185047 #44 Feb 24 2023 02:04:02 %S A185047 1,4,21,126,819,5616,40014,293436,2200770,16805880,130245570, %T A185047 1021926780,8102419470,64819355760,522606055815,4242331511910, %U A185047 34645707347265,284459491903860,2346790808206845,19444838125142430,161745698950048395,1350224965148230080 %N A185047 Expansion of 2F1( [1, 4/3]; [3]; 9*x). %C A185047 Close to A003168. %C A185047 Can be seen as a degree 3 analog of the Catalan numbers A000108 (which would be degree 2). %H A185047 Vincenzo Librandi, <a href="/A185047/b185047.txt">Table of n, a(n) for n = 0..1000</a> %F A185047 a(n) = -9^(n+1)*binomial(n+1/3, n+2). - _Karol A. Penson_, Nov 06 2015 %F A185047 a(n) = (1/(6*sqrt(3)*Pi))*Integral_{x = 0..9} x^n*x^(1/3)*(9 - x)^(2/3). Cf. A034164. - _Peter Bala_, Nov 17 2015 %F A185047 O.g.f.: (1 - (1-9*x)^(2/3) - 6*x)/(9*x^2). %F A185047 D-finite with recurrence (n+2)*a(n) +3*(-3*n-1)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022 %F A185047 Sum_{n>=0} 1/a(n) = (3/512)*(92 + 15*Pi*sqrt(3) + 45*log(3)). - _Amiram Eldar_, Dec 18 2022 %F A185047 a(n) = ((n + 3)/3) * Product_{1 <= i <= j <= n} (2*i + j + 3)/(2*i + j - 1). - _Peter Bala_, Feb 22 2023 %p A185047 A185047:=n->-9^(n+1)*binomial(n+1/3, n+2): seq(A185047(n), n=0..30); # _Wesley Ivan Hurt_, Feb 16 2017 %t A185047 CoefficientList[Series[ HypergeometricPFQ[{1, 4/3}, {3}, 9 x], {x, 0, 20}], x] %Y A185047 Cf. A000108, A003168, A034164. %K A185047 nonn,easy %O A185047 0,2 %A A185047 _Olivier Gérard_, Feb 15 2011