This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185051 #16 Dec 08 2017 03:55:05 %S A185051 -3,1,5,2,1,24,9,2,2,1,1,6,8,11,2,44,1,5,3,424,1,5,39,2,1,1,2,1,1,6,1, %T A185051 1,1,1,1,1,1,1,1,2,7,4,2,1,1,15,2,3,3,3,2,1,45,15,10,16,3,1,1,1,2,2,1, %U A185051 1,6,2,1,2,3,2,14,3,5,1,2,1,19,1,4,16,5,1,2,1,1,2,2,2,1,1,1,2,2,1,3,1,2,1,16,65,2,3,3,1,5,3,1,11,2,1,3,1,1,2,5,2,11,1,2,2,1,10,1,1,2 %N A185051 Continued fraction expansion of Hlawka's Schneckenkonstante K = -2.157782... %D A185051 P. J. Davis, Spirals from Theodorus to Chaos, A K Peters, Wellesley, MA, 1993. %H A185051 David Brink, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.119.09.779">The spiral of Theodorus and sums of zeta-values at the half-integers</a>, The American Mathematical Monthly, Vol. 119, No. 9 (November 2012), pp. 779-786. %H A185051 Edmund Hlawka, <a href="http://dx.doi.org/10.1007/BF01571563">Gleichverteilung und Quadratwurzelschnecke</a>, Monatsh. Math., 89 (1980) 19-44. [For a summary in English see the Davis reference, pp. 157-167.] %Y A185051 Cf. A105459 for decimal expansion. %K A185051 sign,cofr %O A185051 0,1 %A A185051 _David Brink_, Jan 22 2012