This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185070 #23 Dec 15 2021 10:25:01 %S A185070 1,1,4,25,2,224,32,2625,500,38056,8560,40,657433,164150,1960,13178880, %T A185070 3526656,71680,300585601,84389928,2442720,2240,7683776000,2232672000, %U A185070 83328000,224000,217534555161,64830707370,2931500880,14907200 %N A185070 Triangular array read by rows. T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} that have exactly k 3-cycles. n>=0, 0<=k<=floor(n/3). %C A185070 The total number of 3-cycles over all functions on {1,2,...,n} is 2*binomial(n,3)*n^(n-3). So we see that as n gets large the probability that a random function would contain k 3-cycles is a Poisson distribution with mean = 1/3. Generally, the total number of j-cycles over all functions on {1,2,...,n} is (j-1)!*binomial(n,j)*n^(n-j). %F A185070 E.g.f.: exp(T(x)^3/3*(y - 1))/(1-T(x)) where T(x) is the e.g.f. for A000169. %e A185070 1; %e A185070 1; %e A185070 4; %e A185070 25, 2; %e A185070 224, 32; %e A185070 2625, 500; %e A185070 38056, 8560, 40; %e A185070 657433, 164150, 1960; %e A185070 13178880, 3526656, 71680; %e A185070 300585601, 84389928, 2442720, 2240; %e A185070 ... %t A185070 nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t^3/3(y-1)]/(1-t),{x,0,nn}],{x,y}]//Grid %Y A185070 Cf. A185025, A055134, A190314. %K A185070 nonn,tabf %O A185070 0,3 %A A185070 _Geoffrey Critzer_, Dec 25 2012