This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185072 #23 Oct 11 2013 22:16:35 %S A185072 1,1,-2,6,-28,70,-1446,-22302,-855032,-33435486,-1541257250, %T A185072 -80299386706,-4675923739764,-300809006015466,-21184444811987030, %U A185072 -1620869900459370150,-133878027649528854000,-11872222666784936265342,-1125045987661214982721602,-113458738692543731877937418 %N A185072 G.f.: A(x) satisfies: [x^n] A(x)^(n^2-2*n+2) = 0 for n>=2. %C A185072 It appears that (n+1) divides [x^n] A(x)^2 for n>=0 (A229128). %H A185072 Paul D. Hanna, <a href="/A185072/b185072.txt">Table of n, a(n) for n = 0..200</a> %F A185072 G.f. A(x) satisfies: %F A185072 (1) A(x) = F(x/A(x)) where F(x) = A(x*F(x)) is the g.f. of A229041. %F A185072 (2) A(x) = G(x/A(x)^2) where G(x) = A(x*G(x)^2) is the g.f. of A229044. %F A185072 (3) A(x) = H(x*A(x)) where H(x) = A(x/H(x)) is the g.f. of A230218. %F A185072 (4) [x^n] G_n(x) = 0 for n>1 where G_n(x) = A( x*G_n(x)^n ) and A(x) = G_n( x/A(x)^n ). %e A185072 G.f.: A(x) = 1 + x - 2*x^2 + 6*x^3 - 28*x^4 + 70*x^5 - 1446*x^6 -... %e A185072 Coefficients of x^k in the powers A(x)^(n^2-2*n+2) of g.f. A(x) begin: %e A185072 n=1: [1, 1, -2, 6, -28, 70, -1446, -22302, ...]; %e A185072 n=2: [1, 2, -3, 8, -40, 60, -2604, -48112, ...]; %e A185072 n=3: [1, 5, 0, 0, -35, -189, -5760, -140700, ...]; %e A185072 n=4: [1, 10, 25, 0, -70, -728, -13410, -339000, ...]; %e A185072 n=5: [1, 17, 102, 238, 0, -2142, -32198, -743886, ...]; %e A185072 n=6: [1, 26, 273, 1456, 3822, 0, -80366, -1638312, ...]; %e A185072 n=7: [1, 37, 592, 5328, 29045, 89947, 0, -3630588, ...]; %e A185072 n=8: [1, 50, 1125, 15000, 130900, 769860, 2823600, 0, ...]; ... %e A185072 where the coefficients of x^n in A(x)^(n^2-2*n+2) all equal zero for n>1. %e A185072 RELATED FUNCTIONS. %e A185072 The coefficients in G_n(x) that satisfy G_n(x) = A(x*G_n(x)^n) begin: %e A185072 G_1: [1, 1,-1, 1, -7, -49, -1191, -31569,-1051695, -41520593, ...]; %e A185072 G_2: [1, 1, 0, -1, -6, -78, -1544, -40605,-1328178, -51857806, ...]; %e A185072 G_3: [1, 1, 1, 0, -9, -117, -2118, -53232,-1699905, -65386779, ...]; %e A185072 G_4: [1, 1, 2, 4, 0, -141, -2958, -71900,-2216860, -83454920, ...]; %e A185072 G_5: [1, 1, 3, 11, 37, 0, -3245, -95286,-2941059,-108180433, ...]; %e A185072 G_6: [1, 1, 4, 21, 118, 581, 0, -99086,-3760182,-141280086, ...]; %e A185072 G_7: [1, 1, 5, 34, 259, 2002, 13212, 0,-3775221,-176047295, ...]; %e A185072 G_8: [1, 1, 6, 50, 476, 4788, 47578, 397090, 0,-172383145, ...]; %e A185072 G_9: [1, 1, 7, 69, 785, 9589,120333,1468749,14889577, 0, ...]; %e A185072 G_10:[1, 1, 8, 91,1202, 17180,256056,3859425,56018694, 669865615, 0, ...]; ... %e A185072 Note how that the coefficients of x^n in G_n(x) are zero for n>1. %o A185072 (PARI) {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0);A[#A]=-Vec((1/x*serreverse(x/Ser(A)^(#A-1)))^(1/(#A-1)))[#A]);A[n+1]} %o A185072 for(n=0,30,print1(a(n),", ")) %Y A185072 Cf. A185082, A229041, A229044, A229128, A230218. %K A185072 sign %O A185072 0,3 %A A185072 _Paul D. Hanna_, Jan 22 2012 %E A185072 Name changed and entry revised by _Paul D. Hanna_, Oct 11 2013