cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185077 Numbers such that the largest prime factor equals the sum of the squares of the other prime factors.

This page as a plain text file.
%I A185077 #34 Jul 28 2024 11:39:35
%S A185077 78,156,234,290,312,468,580,624,702,742,936,1014,1160,1248,1404,1450,
%T A185077 1484,1872,2028,2106,2320,2496,2808,2900,2968,3042,3744,4056,4212,
%U A185077 4498,4640,4992,5194,5616,5800,5936,6084,6318,7250,7488,8112,8410,8424,8715,8996,9126,9280,9962
%N A185077 Numbers such that the largest prime factor equals the sum of the squares of the other prime factors.
%C A185077 Observation : it seems that the prime divisors of a majority of numbers n are of the form {2, p, q} with q = 2^2 + p^2, but there exists more rarely numbers with more prime divisors (examples : 8715 = 3*5*7*83; 153230 = 2*5*7*11*199).
%C A185077 Terms which are odd: 8715, 26145, 41349, 43575, 61005, 61971, 78435, ..., . - _Robert G. Wilson v_, Jul 02 2014
%H A185077 Amiram Eldar, <a href="/A185077/b185077.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..725 from Robert Israel)
%e A185077 8996 is in the sequence because the prime divisors are {2, 13, 173} and 173 = 13^2 + 2^2.
%p A185077 filter:= proc(n)
%p A185077 local F,f,x;
%p A185077 F:= numtheory:-factorset(n);
%p A185077 f:= max(F);
%p A185077 evalb(f = add(x^2,x=F minus {f}));
%p A185077 end proc:
%p A185077 select(filter, [$1..10000]); # _Robert Israel_, Jul 02 2014
%t A185077 Reap[Do[p = First /@ FactorInteger[n]; If[p[[-1]] == Plus@@(Most[p]^2), Sow[n]], {n, 9962}]][[2, 1]]
%t A185077 lpfQ[n_]:=With[{f=FactorInteger[n][[;;,1]]},Total[Most[f]^2]==Last[f]]; Select[Range[10000],lpfQ] (* _Harvey P. Dale_, Jul 28 2024 *)
%o A185077 (PARI) isok(n) = {my(f = factor(n)); f[#f~, 1] == sum(i=1, #f~ - 1, f[i, 1]^2);} \\ _Michel Marcus_, Jul 02 2014
%Y A185077 Cf. A071140.
%Y A185077 See also the related sequences A048261, A121518.
%K A185077 nonn
%O A185077 1,1
%A A185077 _Michel Lagneau_, Feb 18 2011
%E A185077 Corrected by _T. D. Noe_, Feb 18 2011