A185081 Triangle T(n,k), read by rows, given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 2, 0, 2, 4, 3, 0, 3, 9, 10, 5, 0, 5, 18, 28, 22, 8, 0, 8, 35, 68, 74, 45, 13, 0, 13, 66, 154, 210, 177, 88, 21, 0, 21, 122, 331, 541, 574, 397, 167, 34, 0, 34, 222, 686, 1302, 1656, 1446, 850, 310, 55
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 2, 4, 3; 0, 3, 9, 10, 5; 0, 5, 18, 28, 22, 8; 0, 8, 35, 68, 74, 45, 13; From _Philippe Deléham_, Apr 11 2012: (Start) Triangle in A209138 begins: 1; 1, 2; 2, 4, 3; 3, 9, 10, 5; 5, 18, 28, 22, 8; 8, 35, 68, 74, 45, 13; (End)
Programs
-
Mathematica
nmax = 9; T[n_, n_] := Fibonacci[n+1]; T[, 0] = 0; T[n, 1] := Fibonacci[n]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k] + T[n - 2, k - 1] + T[n - 2, k - 2]; T[, ] = 0; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
Formula
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), for n > 2, T(0,0) = T(1,1) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(2,2) = 2.
T(n,k) = A209138(n,k-1) for k >= 1. - Philippe Deléham, Apr 11 2012
G.f.: (-1 + x^2*y + x + x^2)/(-1 + x^2*y + x + x^2 + x*y + x^2*y^2). - R. J. Mathar, Aug 11 2015
Extensions
Corrected by Jean-François Alcover, Jun 20 2017
Comments