cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185081 Triangle T(n,k), read by rows, given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 4, 3, 0, 3, 9, 10, 5, 0, 5, 18, 28, 22, 8, 0, 8, 35, 68, 74, 45, 13, 0, 13, 66, 154, 210, 177, 88, 21, 0, 21, 122, 331, 541, 574, 397, 167, 34, 0, 34, 222, 686, 1302, 1656, 1446, 850, 310, 55
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2012

Keywords

Comments

Row sums: A133494.

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  2;
  0,  2,  4,  3;
  0,  3,  9, 10,  5;
  0,  5, 18, 28, 22,  8;
  0,  8, 35, 68, 74, 45, 13;
From _Philippe Deléham_, Apr 11 2012: (Start)
Triangle in A209138 begins:
  1;
  1,  2;
  2,  4,  3;
  3,  9, 10,  5;
  5, 18, 28, 22,  8;
  8, 35, 68, 74, 45, 13; (End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 9; T[n_, n_] := Fibonacci[n+1]; T[, 0] = 0; T[n, 1] := Fibonacci[n]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k] + T[n - 2, k - 1] + T[n - 2, k - 2]; T[, ] = 0;
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000007(n), A133494(n) for x = -1, 0, 1 respectively.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), for n > 2, T(0,0) = T(1,1) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(2,2) = 2.
T(n+1,n) = A004798(n), T(n,n) = T(n+1,1) = A000045(n+1).
T(n,k) = A209138(n,k-1) for k >= 1. - Philippe Deléham, Apr 11 2012
G.f.: (-1 + x^2*y + x + x^2)/(-1 + x^2*y + x + x^2 + x*y + x^2*y^2). - R. J. Mathar, Aug 11 2015

Extensions

Corrected by Jean-François Alcover, Jun 20 2017