This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185122 #28 Apr 04 2024 10:13:49 %S A185122 2,11,283,3319,48761,863231,17119607,393474749,10123457689, %T A185122 290522736467,8989787252711,304978405943587,11177758345241723, %U A185122 442074237951168419,18528729602926047181,830471669159330267737,39482554816041508293677,1990006276023222816118943,105148064265927977839670339,5857193485931947477684595711 %N A185122 a(n) = minimum pandigital prime in base n. %C A185122 a(n) is the smallest prime whose base-n representation contains all digits (i.e., 0,1,...,n-1) at least once. %H A185122 Chai Wah Wu, <a href="/A185122/b185122.txt">Table of n, a(n) for n = 2..386</a> (terms 2..100 from Per H. Lundow) %H A185122 Chai Wah Wu, <a href="https://arxiv.org/abs/2403.20304">Pandigital and penholodigital numbers</a>, arXiv:2403.20304 [math.GM], 2024. See p. 3. %e A185122 The corresponding base-b representations are: %e A185122 2 10 %e A185122 3 102 %e A185122 4 10123 %e A185122 5 101234 %e A185122 6 1013425 %e A185122 7 10223465 %e A185122 8 101234567 %e A185122 9 1012346785 %e A185122 10 10123457689 %e A185122 11 1022345689a7 %e A185122 12 101234568a79b %e A185122 13 10123456789abc %e A185122 14 10123456789cdab %e A185122 15 10223456789adbce %e A185122 ... %o A185122 (Python) %o A185122 from math import gcd %o A185122 from itertools import count %o A185122 from sympy import nextprime %o A185122 from sympy.ntheory import digits %o A185122 def A185122(n): %o A185122 m = n %o A185122 j = 0 %o A185122 if n > 3: %o A185122 for j in range(1,n): %o A185122 if gcd((n*(n-1)>>1)+j,n-1) == 1: %o A185122 break %o A185122 if j == 0: %o A185122 for i in range(2,n): %o A185122 m = n*m+i %o A185122 elif j == 1: %o A185122 for i in range(1,n): %o A185122 m = n*m+i %o A185122 else: %o A185122 for i in range(2,1+j): %o A185122 m = n*m+i %o A185122 for i in range(j,n): %o A185122 m = n*m+i %o A185122 m -= 1 %o A185122 while True: %o A185122 if len(set(digits(m:=nextprime(m),n)[1:]))==n: %o A185122 return m # _Chai Wah Wu_, Mar 12 2024 %K A185122 nonn,base %O A185122 2,1 %A A185122 _Per H. Lundow_, Jan 16 2012