This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185131 #35 Jan 09 2025 04:27:58 %S A185131 1,2,1,5,2,19,6,1,85,22,2,509,110,9,1,4060,792,49,1,41301,7805,455,5, %T A185131 510489,97546,5783,32,7319447,1435720,90938,385,117940535,23780814, %U A185131 1620479,7574,1,2094480864,432757568,31478584,181227,3,40497138011,8542471494 %N A185131 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth at least g. %C A185131 The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A000066(g). %H A185131 Jason Kimberley, <a href="/A185131/b185131.txt">Table of i, a(i) for i = 2..59 (n = 2..16)</a> %H A185131 B. Brinkmann, J. Goedgebeur, and B. D. McKay, <a href="https://doi.org/10.46298/dmtcs.551">Generation of cubic graphs</a>, Discr. Math. Theor. Comp. Sci. 13 (2) (2011) 69-80. %H A185131 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/cubic">Cubic graphs</a> %H A185131 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %H A185131 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a> %e A185131 1; %e A185131 2, 1; %e A185131 5, 2; %e A185131 19, 6, 1; %e A185131 85, 22, 2; %e A185131 509, 110, 9, 1; %e A185131 4060, 792, 49, 1; %e A185131 41301, 7805, 455, 5; %e A185131 510489, 97546, 5783, 32; %e A185131 7319447, 1435720, 90938, 385; %e A185131 117940535, 23780814, 1620479, 7574, 1; %e A185131 2094480864, 432757568, 31478584, 181227, 3; %e A185131 40497138011, 8542471494, 656783890, 4624501, 21; %e A185131 845480228069, 181492137812, 14621871204, 122090544, 546, 1; %e A185131 18941522184590, 4127077143862, 345975648562, 3328929954, 30368, 0; %e A185131 453090162062723, ?, ?, 93990692595, 1782840, 1; %e A185131 11523392072541432, ?, ?, 2754222605376, 95079083, 3; %e A185131 310467244165539782, ?, ?, ?, 4686063120, 13; %e A185131 8832736318937756165, ?, ?, ?, 220323447962, 155; %e A185131 ?, ?, ?, ?, 10090653722861, 4337; %Y A185131 Connected 3-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8). %Y A185131 Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). %Y A185131 Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: this sequence (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8). %K A185131 nonn,hard,tabf %O A185131 2,2 %A A185131 _Jason Kimberley_, Jan 09 2012 %E A185131 Terms C(18,6), C(20,7) and C(21,7) from House of Graphs via _Jason Kimberley_, May 21 2017