cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185131 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth at least g.

This page as a plain text file.
%I A185131 #35 Jan 09 2025 04:27:58
%S A185131 1,2,1,5,2,19,6,1,85,22,2,509,110,9,1,4060,792,49,1,41301,7805,455,5,
%T A185131 510489,97546,5783,32,7319447,1435720,90938,385,117940535,23780814,
%U A185131 1620479,7574,1,2094480864,432757568,31478584,181227,3,40497138011,8542471494
%N A185131 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth  at least g.
%C A185131 The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A000066(g).
%H A185131 Jason Kimberley, <a href="/A185131/b185131.txt">Table of i, a(i) for i = 2..59 (n = 2..16)</a>
%H A185131 B. Brinkmann, J. Goedgebeur, and B. D. McKay, <a href="https://doi.org/10.46298/dmtcs.551">Generation of cubic graphs</a>, Discr. Math. Theor. Comp. Sci. 13 (2) (2011) 69-80.
%H A185131 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/cubic">Cubic graphs</a>
%H A185131 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>
%H A185131 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>
%e A185131                   1;
%e A185131                   2,             1;
%e A185131                   5,             2;
%e A185131                  19,             6,            1;
%e A185131                  85,            22,            2;
%e A185131                 509,           110,            9,          1;
%e A185131                4060,           792,           49,          1;
%e A185131               41301,          7805,          455,          5;
%e A185131              510489,         97546,         5783,         32;
%e A185131             7319447,       1435720,        90938,        385;
%e A185131           117940535,      23780814,      1620479,       7574,         1;
%e A185131          2094480864,     432757568,     31478584,     181227,         3;
%e A185131         40497138011,    8542471494,    656783890,    4624501,        21;
%e A185131        845480228069,  181492137812,  14621871204,  122090544,       546,    1;
%e A185131      18941522184590, 4127077143862, 345975648562, 3328929954,     30368,    0;
%e A185131     453090162062723,        ?,            ?,     93990692595,   1782840,    1;
%e A185131   11523392072541432,        ?,            ?,   2754222605376,  95079083,    3;
%e A185131  310467244165539782,        ?,            ?,          ?,     4686063120,   13;
%e A185131 8832736318937756165,        ?,            ?,          ?,   220323447962,  155;
%e A185131           ?,                ?,            ?,          ?, 10090653722861, 4337;
%Y A185131 Connected 3-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
%Y A185131 Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
%Y A185131 Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: this sequence (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).
%K A185131 nonn,hard,tabf
%O A185131 2,2
%A A185131 _Jason Kimberley_, Jan 09 2012
%E A185131 Terms C(18,6), C(20,7) and C(21,7) from House of Graphs via _Jason Kimberley_, May 21 2017