cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185139 Triangle T(n,k) = Sum_{i=1..n} 2^(i-1)*C(n+2*k-i-1, k-1), 1 <= k <= n.

This page as a plain text file.
%I A185139 #16 Jun 23 2017 19:18:39
%S A185139 1,3,10,7,25,91,15,56,210,792,31,119,456,1749,6721,63,246,957,3718,
%T A185139 14443,56134,127,501,1969,7722,30251,118456,463828,255,1012,4004,
%U A185139 15808,62322,245480,966416,3803648,511,2035,8086,32071,127024,502588,1987096,7852453,31020445,1023,4082,16263
%N A185139 Triangle T(n,k) = Sum_{i=1..n} 2^(i-1)*C(n+2*k-i-1, k-1), 1 <= k <= n.
%C A185139 The first term of the m-th row is 2^m-1.
%H A185139 G. C. Greubel, <a href="/A185139/b185139.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A185139 V. Shevelev and P. Moses, <a href="http://arxiv.org/abs/1112.5715">On a sequence of polynomials with hypothetically integer coefficients</a> arXiv:1112.5715 [math.NT], 2011.
%F A185139 2*T_n(k) = T_(n-1)(k+1) + C(n+2*k-1,k).
%F A185139 T_n(k) = T_(n-2)(k+1) + C(n+2*k-1,k).
%F A185139 T_n(k) = 2*T_(n-1)(k) + C(n+2*k-2,k-1).
%F A185139 T_n(k+1) = 4*T_n(k) - (n/k)*C(n+2*k-1,k-1).
%e A185139 Triangle begins
%e A185139 1,
%e A185139 3,     10,
%e A185139 7,     25,    91,
%e A185139 15,    56,    210,  792,
%e A185139 31,    119,   456,  1749,  6721,
%e A185139 63,    246,   957,  3718,  14443,  56134,
%e A185139 127,   501,   1969, 7722,  30251,  118456, 463828,
%e A185139 255,   1012,  4004, 15808, 62322,  245480, 966416,  3803648,
%e A185139 511,   2035,  8086, 32071, 127024, 502588, 1987096, 7852453, 31020445,
%e A185139 ...
%t A185139 Table[Sum[2^(j - 1)*Binomial[n + 2*k - j - 1, k - 1], {j, 1, n}], {n,
%t A185139    1, 50}, {k, 1, n}] // Flatten (* _G. C. Greubel_, Jun 23 2017 *)
%o A185139 (PARI) for(n=1,20, for(k=1,n, print1(sum(j=1,n, 2^(j-1)*binomial(n+2*k-j-1,k-1)), ", "))) \\ _G. C. Greubel_, Jun 23 2017
%Y A185139 Cf. A174531.
%K A185139 nonn,tabl
%O A185139 1,2
%A A185139 _Vladimir Shevelev_ and _Peter J. C. Moses_, Feb 04 2012