This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185149 #31 Jun 24 2017 15:49:23 %S A185149 1,1,3,27,756,68040,20207880,20228087880,69422797604160, %T A185149 828491666608045440,34788365080871828025600, %U A185149 5191328567558179408948185600,2776779354844059467693477099212800,5363460395055494624228658756213491712000 %N A185149 a(n) = 3^n*A003046(n+1)/A002457(n). %C A185149 a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), A000108(j+1), A000108(i+1)))_{0<=i,j<=n}. %H A185149 G. C. Greubel, <a href="/A185149/b185149.txt">Table of n, a(n) for n = 0..60</a> %F A185149 a(n) = Product_{k=0..(n-1)} (A000108(k+2) - A000108(k+1)). %F A185149 a(n) = Product_{k=0..(n-1)} 3(k+1)*A000108(k+1)/(k+3). %F A185149 a(n) = Product_{k=0..(n-1)} A000245(k+1). %F A185149 a(n) = (A^(3/2) 2^(n(n+1))*2^(23/24)*3^n*Pi^(-1/4-n/2)*G(n+3/2)*Gamma(n+1)) /(e^(1/8)*G(n+4)), where G is Barnes G-function, and A is the Glaisher-Kinkelin constant (A074962) (reported by Wolfram Alpha). %F A185149 a(n) ~ A^(3/2) * 2^(n^2+n+5/24) * 3^n * exp(3*n/2-1/8) / (n^(3*n/2+31/8) * Pi^(n/2+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - _Vaclav Kotesovec_, Nov 14 2014 %t A185149 Table[Product[3*(2*k+2)!/((k+3)!*k!),{k,0,n-1}],{n,0,10}] (* _Vaclav Kotesovec_, Nov 14 2014 *) %Y A185149 Cf. A000108, A000245, A074962. %Y A185149 Cf. A087014, A087016, A087017 (some values of the Barnes G-function). %K A185149 nonn,easy %O A185149 0,3 %A A185149 _Paul Barry_, Feb 15 2011