cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185156 Primes with the property that complementing any two different bits in the binary representation of these primes never produces a prime number.

This page as a plain text file.
%I A185156 #23 Mar 11 2015 02:19:26
%S A185156 2,3,2731,174763,715827883,1464948053
%N A185156 Primes with the property that complementing any two different bits in the binary representation of these primes never produces a prime number.
%C A185156 Also called weakly primes of 2nd order in base 2.
%C A185156 Formal definition: let P = set of prime numbers, XOR(x,y) = bitwise x xor y, set of witnesses for an integer x>1 w(x) := Union_{1<=k<=floor(log_2(x)), 0<=j<k}{XOR(x, 2^k+2^j)}; then a is in the sequence iff (a in P)&( Intersection(w(a), P) = {}).
%C A185156 There are only 6 terms < 10^11 (exhaustive search). But several larger terms of a special form are known (Wagstaff primes, A000979). The smallest of them are:
%C A185156 a(6+)=2932031007403,
%C A185156 a(7+)=768614336404564651,
%C A185156 a(8+)=201487636602438195784363. - _Terentyev Oleg_
%e A185156 a(3)=2731 is in the sequence because it is prime and all its witnesses are composite numbers :
%e A185156 2731  =  101010101011 ->       10101011  =     171  =  3^2 * 19
%e A185156                              1000101011  =     555  =  3 * 5 * 37
%e A185156                              1010001011  =     651  =  3 * 7 * 31
%e A185156                              1010100011  =     675  =  3^3 * 5^2
%e A185156                              1010101001  =     681  =  3 * 227
%e A185156                              1010101010  =     682  =  2 * 11 * 31
%e A185156                              1010101111  =     687  =  3 * 229
%e A185156                              1010111011  =     699  =  3 * 233
%e A185156                              1011101011  =     747  =  3^2 * 83
%e A185156                              1110101011  =     939  =  3 * 313
%e A185156                             11010101011  =    1707  =  3 * 569
%e A185156                            100000101011  =    2091  =  3 * 17 * 41
%e A185156                            100010001011  =    2187  =  3^7
%e A185156                            100010100011  =    2211  =  3 * 11 * 67
%e A185156                            100010101001  =    2217  =  3 * 739
%e A185156                            100010101010  =    2218  =  2 * 1109
%e A185156                            100010101111  =    2223  =  3^2 * 13 * 19
%e A185156                            100010111011  =    2235  =  3 * 5 * 149
%e A185156                            100011101011  =    2283  =  3 * 761
%e A185156                            100110101011  =    2475  =  3^2 * 5^2 * 11
%e A185156                            101000001011  =    2571  =  3 * 857
%e A185156                            101000100011  =    2595  =  3 * 5 * 173
%e A185156                            101000101001  =    2601  =  3^2 * 17^2
%e A185156                            101000101010  =    2602  =  2 * 1301
%e A185156                            101000101111  =    2607  =  3 * 11 * 79
%e A185156                            101000111011  =    2619  =  3^3 * 97
%e A185156                            101001101011  =    2667  =  3 * 7 * 127
%e A185156                            101010000011  =    2691  =  3^2 * 13 * 23
%e A185156                            101010001001  =    2697  =  3 * 29 * 31
%e A185156                            101010001010  =    2698  =  2 * 19 * 71
%e A185156                            101010001111  =    2703  =  3 * 17 * 53
%e A185156                            101010011011  =    2715  =  3 * 5 * 181
%e A185156                            101010100001  =    2721  =  3 * 907
%e A185156                            101010100010  =    2722  =  2 * 1361
%e A185156                            101010100111  =    2727  =  3^3 * 101
%e A185156                            101010101000  =    2728  =  2^3 * 11 * 31
%e A185156                            101010101101  =    2733  =  3 * 911
%e A185156                            101010101110  =    2734  =  2 * 1367
%e A185156                            101010110011  =    2739  =  3 * 11 * 83
%e A185156                            101010111001  =    2745  =  3^2 * 5 * 61
%e A185156                            101010111010  =    2746  =  2 * 1373
%e A185156                            101010111111  =    2751  =  3 * 7 * 131
%e A185156                            101011001011  =    2763  =  3^2 * 307
%e A185156                            101011100011  =    2787  =  3 * 929
%e A185156                            101011101001  =    2793  =  3 * 7^2 * 19
%e A185156                            101011101010  =    2794  =  2 * 11 * 127
%e A185156                            101011101111  =    2799  =  3^2 * 311
%e A185156                            101011111011  =    2811  =  3 * 937
%e A185156                            101100101011  =    2859  =  3 * 953
%e A185156                            101110001011  =    2955  =  3 * 5 * 197
%e A185156                            101110100011  =    2979  =  3^2 * 331
%e A185156                            101110101001  =    2985  =  3 * 5 * 199
%e A185156                            101110101010  =    2986  =  2 * 1493
%e A185156                            101110101111  =    2991  =  3 * 997
%e A185156                            101110111011  =    3003  =  3 * 7 * 11 * 13
%e A185156                            101111101011  =    3051  =  3^3 * 113
%e A185156                            110010101011  =    3243  =  3 * 23 * 47
%e A185156                            111000101011  =    3627  =  3^2 * 13 * 31
%e A185156                            111010001011  =    3723  =  3 * 17 * 73
%e A185156                            111010100011  =    3747  =  3 * 1249
%e A185156                            111010101001  =    3753  =  3^3 * 139
%e A185156                            111010101010  =    3754  =  2 * 1877
%e A185156                            111010101111  =    3759  =  3 * 7 * 179
%e A185156                            111010111011  =    3771  =  3^2 * 419
%e A185156                            111011101011  =    3819  =  3 * 19 * 67
%e A185156                            111110101011  =    4011  =  3 * 7 * 191
%t A185156 isWPof2ndOrderBase2[x_] := Module[{j = 1, k = 2, flag = x <= 3 || ! BitAnd[x - 3, x - 4] == 0, bitlen = BitLength@x}, While[flag && k < bitlen, While[flag && j < k, flag = !PrimeQ@BitXor[x, BitShiftLeft[1, j] + BitShiftLeft[1, k]]; j++]; j = 1; k++]; flag]; Select[Prime[Range[20000]], isWPof2ndOrderBase2]
%K A185156 nonn,base
%O A185156 1,1
%A A185156 _Terentyev Oleg_, Dec 22 2011