This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185156 #23 Mar 11 2015 02:19:26 %S A185156 2,3,2731,174763,715827883,1464948053 %N A185156 Primes with the property that complementing any two different bits in the binary representation of these primes never produces a prime number. %C A185156 Also called weakly primes of 2nd order in base 2. %C A185156 Formal definition: let P = set of prime numbers, XOR(x,y) = bitwise x xor y, set of witnesses for an integer x>1 w(x) := Union_{1<=k<=floor(log_2(x)), 0<=j<k}{XOR(x, 2^k+2^j)}; then a is in the sequence iff (a in P)&( Intersection(w(a), P) = {}). %C A185156 There are only 6 terms < 10^11 (exhaustive search). But several larger terms of a special form are known (Wagstaff primes, A000979). The smallest of them are: %C A185156 a(6+)=2932031007403, %C A185156 a(7+)=768614336404564651, %C A185156 a(8+)=201487636602438195784363. - _Terentyev Oleg_ %e A185156 a(3)=2731 is in the sequence because it is prime and all its witnesses are composite numbers : %e A185156 2731 = 101010101011 -> 10101011 = 171 = 3^2 * 19 %e A185156 1000101011 = 555 = 3 * 5 * 37 %e A185156 1010001011 = 651 = 3 * 7 * 31 %e A185156 1010100011 = 675 = 3^3 * 5^2 %e A185156 1010101001 = 681 = 3 * 227 %e A185156 1010101010 = 682 = 2 * 11 * 31 %e A185156 1010101111 = 687 = 3 * 229 %e A185156 1010111011 = 699 = 3 * 233 %e A185156 1011101011 = 747 = 3^2 * 83 %e A185156 1110101011 = 939 = 3 * 313 %e A185156 11010101011 = 1707 = 3 * 569 %e A185156 100000101011 = 2091 = 3 * 17 * 41 %e A185156 100010001011 = 2187 = 3^7 %e A185156 100010100011 = 2211 = 3 * 11 * 67 %e A185156 100010101001 = 2217 = 3 * 739 %e A185156 100010101010 = 2218 = 2 * 1109 %e A185156 100010101111 = 2223 = 3^2 * 13 * 19 %e A185156 100010111011 = 2235 = 3 * 5 * 149 %e A185156 100011101011 = 2283 = 3 * 761 %e A185156 100110101011 = 2475 = 3^2 * 5^2 * 11 %e A185156 101000001011 = 2571 = 3 * 857 %e A185156 101000100011 = 2595 = 3 * 5 * 173 %e A185156 101000101001 = 2601 = 3^2 * 17^2 %e A185156 101000101010 = 2602 = 2 * 1301 %e A185156 101000101111 = 2607 = 3 * 11 * 79 %e A185156 101000111011 = 2619 = 3^3 * 97 %e A185156 101001101011 = 2667 = 3 * 7 * 127 %e A185156 101010000011 = 2691 = 3^2 * 13 * 23 %e A185156 101010001001 = 2697 = 3 * 29 * 31 %e A185156 101010001010 = 2698 = 2 * 19 * 71 %e A185156 101010001111 = 2703 = 3 * 17 * 53 %e A185156 101010011011 = 2715 = 3 * 5 * 181 %e A185156 101010100001 = 2721 = 3 * 907 %e A185156 101010100010 = 2722 = 2 * 1361 %e A185156 101010100111 = 2727 = 3^3 * 101 %e A185156 101010101000 = 2728 = 2^3 * 11 * 31 %e A185156 101010101101 = 2733 = 3 * 911 %e A185156 101010101110 = 2734 = 2 * 1367 %e A185156 101010110011 = 2739 = 3 * 11 * 83 %e A185156 101010111001 = 2745 = 3^2 * 5 * 61 %e A185156 101010111010 = 2746 = 2 * 1373 %e A185156 101010111111 = 2751 = 3 * 7 * 131 %e A185156 101011001011 = 2763 = 3^2 * 307 %e A185156 101011100011 = 2787 = 3 * 929 %e A185156 101011101001 = 2793 = 3 * 7^2 * 19 %e A185156 101011101010 = 2794 = 2 * 11 * 127 %e A185156 101011101111 = 2799 = 3^2 * 311 %e A185156 101011111011 = 2811 = 3 * 937 %e A185156 101100101011 = 2859 = 3 * 953 %e A185156 101110001011 = 2955 = 3 * 5 * 197 %e A185156 101110100011 = 2979 = 3^2 * 331 %e A185156 101110101001 = 2985 = 3 * 5 * 199 %e A185156 101110101010 = 2986 = 2 * 1493 %e A185156 101110101111 = 2991 = 3 * 997 %e A185156 101110111011 = 3003 = 3 * 7 * 11 * 13 %e A185156 101111101011 = 3051 = 3^3 * 113 %e A185156 110010101011 = 3243 = 3 * 23 * 47 %e A185156 111000101011 = 3627 = 3^2 * 13 * 31 %e A185156 111010001011 = 3723 = 3 * 17 * 73 %e A185156 111010100011 = 3747 = 3 * 1249 %e A185156 111010101001 = 3753 = 3^3 * 139 %e A185156 111010101010 = 3754 = 2 * 1877 %e A185156 111010101111 = 3759 = 3 * 7 * 179 %e A185156 111010111011 = 3771 = 3^2 * 419 %e A185156 111011101011 = 3819 = 3 * 19 * 67 %e A185156 111110101011 = 4011 = 3 * 7 * 191 %t A185156 isWPof2ndOrderBase2[x_] := Module[{j = 1, k = 2, flag = x <= 3 || ! BitAnd[x - 3, x - 4] == 0, bitlen = BitLength@x}, While[flag && k < bitlen, While[flag && j < k, flag = !PrimeQ@BitXor[x, BitShiftLeft[1, j] + BitShiftLeft[1, k]]; j++]; j = 1; k++]; flag]; Select[Prime[Range[20000]], isWPof2ndOrderBase2] %K A185156 nonn,base %O A185156 1,1 %A A185156 _Terentyev Oleg_, Dec 22 2011